856 resultados para La niña que quiso ser estampa


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The El Niño/Southern Oscillation is Earth’s most prominent source of interannual climate variability, alternating irregularly between El Niño and La Niña, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture1, 2, 3, 4, 5. The 1998–1999 extreme La Niña event that followed the 1997–1998 extreme El Niño event6 switched extreme El Niño-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States4, 7. During extreme La Niña events, cold sea surface conditions develop in the central Pacific8, 9, creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Niño characteristics in response to simulated future greenhouse warming10, 11, 12, but how La Niña will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Niña events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Niño events are conducive to development of the extreme La Niña events. Approximately 75% of the increase occurs in years following extreme El Niño events, thus projecting more frequent swings between opposite extremes from one year to the next.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El Niño conditions developed in the tropical Pacific during the latter half of 2015, peaking in December 2015 as one of the strongest El Niño events on record, comparable with the 1997-98 “El Niño of the century”. Conditions in the tropical Pacific are forecast to return to normal over the coming months, with the potential to transition into La Niña conditions during 2016-17. If this was to occur it would act as a further strong perturbation, or ‘kick’, to the climate system and lead to further significant socio-economic impacts affecting many sectors such as infrastructure, agriculture, health and energy. This report analyses La Niña events over the last 37 years of the satellite era (1979-present) and aims to identify regions where there is an increased likelihood of impacts occurring. It is important to note that this analysis is based on past analogous events and is not a prediction for this year. No two La Niña events will be the same – the timing and magnitude of events differs considerably. More importantly, no two La Niña events lead to the same impacts – other local physical and social factors come into play. Therefore, the exact timings, locations and magnitudes of impacts should be interpreted with caution and this should be accounted for in any preparedness measures that are taken. This report has been produced for Evidence on Demand with the assistance of the UK Department for International Development (DFID) contracted through the Climate, Environment, Infrastructure and Livelihoods Professional Evidence and Applied Knowledge Services (CEIL PEAKS) programme, jointly managed by DAI (which incorporates HTSPE Limited) and IMC Worldwide Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar os efeitos associados a El Niño e La Niña sobre o crescimento e desenvolvimento da cobertura vegetal e sua evolução temporal no Estado do Rio Grande do Sul, utilizando imagens do satélite NOAA. Foram utilizados dados mensais de precipitação pluvial e imagens de Índice de Vegetação por Diferença Normalizada (NDVI), no período de julho de 1981 a junho de 2000, sendo as análises feitas para todo o Estado e para as diversas Zonas de Cobertura e Uso do Solo. Os dados, classificados como El Niño, La Niña e neutro, foram utilizados para confeccionar imagens médias, imagens de anomalias e para traçar gráficos de evolução temporal de NDVI. Por fim, foi feita a análise da relação entre precipitação pluvial e NDVI. Os resultados mostraram que as diversas Zonas de Cobertura e Uso do Solo apresentam padrões diferenciados de variação na cobertura vegetal ao longo do ano, o qual é determinado pela disponibilidade hídrica, de radiação solar e de temperatura, sendo possível quantificar as alterações do padrão, através do monitoramento com imagens de NDVI/NOAA. Parte da variabilidade interanual do padrão de evolução do NDVI está associada à ocorrência do fenômeno El Niño e La Niña, como conseqüência, principalmente, do efeito deste fenômeno sobre a precipitação pluvial do Estado. Em anos de El Niño há um aumento na precipitação pluvial e conseqüentemente anomalias positivas de NDVI, enquanto que em anos de La Niña ocorre diminuição da precipitação pluvial a qual proporciona predominância de anomalias negativas de NDVI. Existe um tempo de resposta da vegetação às condições hídricas, ocasionado por uma defasagem entre o aumento ou diminuição da precipitação pluvial e o conseqüente aumento ou decréscimo de NDVI. O padrão e a intensidade dos efeitos no NDVI associados ao fenômeno El Niño e La Niña, estão relacionados às condições edafoclimáticas e de uso e cobertura do solo. As relações entre NDVI e precipitação pluvial evidenciam que este é um dos principais elementos que influi nas condições de crescimento vegetal para o Estado do Rio Grande do Sul.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incluye Bibliografía

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os regimes térmicos e hídricos do solo se comportam de maneiras diferentes em anos de ocorrência dos fenômenos El Niño, La niña e ano de não ocorrência de nenhum dos dois fenômenos. Para estudar estes comportamentos utilizou-se dados de totais horários e mensais da precipitação pluviométrica, dados médios horários e mensais da temperatura do solo nas profundidades de 2cm e 10cm e umidade do solo nas profundidades de 5cm e 20cm, para os anos representativos dos eventos pesquisados. Os resultados mostram que o ano sob a influência do fenômeno El Niño, apresentou maiores valores de temperatura e menores valores de umidade do solo, quando comparado com o ano que esteve sob a influência do fenômeno La Niña. Por outro lado, o ano em que não houve ocorrência dos fenômenos La Niña e El Niño, apresentou valores de temperatura (umidade) do solo maiores (menores) do que o ano de La Niña, porém menores (maiores) do que no ano de El Niño.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of the tropics to North Atlantic cold events, such as Heinrich Event I (H-I, ∼ 17–15 ka) and the Younger Dryas (YD, 12.7–11.5 ka), is still one of the most tantalizing, yet unresolved issues in paleoclimatology. The advent of surface exposure dating has therefore instigated the establishment of glacial chronologies in the tropical Andes to investigate potential climate teleconnections. Here, we present new exposure ages from the Cordillera Cochabamba (17°17′S), Bolivia, that reveal glacial advances during H-I and YD, as well as during the Early Holocene. Our chronology correlates well with cold sea surface temperatures in the eastern tropical Pacific, which indicates that La Niña-like conditions, i.e. forcings intrinsic to the tropics, played a key role for moisture advection and glaciation in the tropical Andes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of oceanographic conditions in the upwelling region off northern Chile (18 degrees-24 degrees S) between 1996 and 1998 (including the 1997-1998 El Niño) is presented using hydrographic measurements acquired on quarterly cruises of the Chilean Fisheries Institute, with sea surface temperature (SST), sea level, and wind speeds from Arica (18.5 degrees S), Iquique (20.5 degrees S), and Antofagasta (23.5 degrees S) and a time series of vertical temperature profiles off Iquique. Spatial patterns of sea surface temperature and salinity from May 1996 to March 1997 followed a normal seasonal progression, though conditions were anomalously cool and fresh. Starting in March 1997, positive anomalies in sea level and sea surface temperature propagated along the South American coast to 37 degrees S. Maximum sea level anomalies occurred in two peaks in May-July 1997 and October 1997 to February 1998, separated by a relaxation period. Maximum anomalies (2 degrees C and 0.1 practical salinity units (psu)) extended to 400 m in December 1997 within 50 km of the coast. March 1998 presented the largest surface anomalies (> 4 degrees C and 0.6 psu). Strong poleward flow (20-35 cm s(-1) ) occurred to 400 m or deeper during both sea level maxima and weaker (10 cm s(-1) ) equatorward flow followed each peak. By May 1998, SST had returned to the climatological mean, and flow was equatorward next to the coast. However, offshore salinity remained anomalously high owing to a tongue of subtropical water extending southeast along the Peruvian coast. Conditions off northern Chile returned to normal between August and December 1998. The timing of the anomalies suggests a connection to equatorial waves. The progression of the 1997-1998 El Niño was very similar to that of 1982-1983, though with different timing with respect to seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the evolution of oceanographic conditions off the western coast of South America between 1996 and 1999, including the cold periods of 1996 and 1998-1999 and the 1997-1998 El Niño, using satellite observations of sea level, winds, sea surface temperature (SST), and chlorophyll concentration. Following a period of cold SST and low sea levels in 1996, both were anomalously high between March 1997 and May 1998. The anomalies were greatest between 5 degrees S and 15 degrees S, although they extended beyond 40 degrees S. Two distinct peaks in sea level and SST occurred in June-July 1997 and December 1997 to January 1998, separated by a relaxation period (August-November) of weaker anomalies. Satellite winds were upwelling favorable throughout the time period for most of the region and in fact increased between November 1997 and March 1998 between 5 degrees S and 25 degrees S. Satellite-derived chlorophyll concentrations are available for November 1996 to June 1997 (Ocean Color and Temperature Sensor (OCTS)) and then from October 1997 to present (Sea-viewing Wide Field-of-view Sensor (SeaWiFS)). Near-surface chlorophyll concentrations fell from May to June 1997 and from December 1997 to March 1998. The decrease was more pronounced in northern Chile than off the coast of Peru or central Chile and was stronger for larger cross-shelf averaging bins since nearshore concentrations remained relatively high.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series of satellite measurements are used to describe patterns of surface temperature and chlorophyll associated with the 1996 cold La Nina phase and the 1997-1998 warm El Nino phase of the El Nino - Southern Oscillation cycle in the upwelling region off northern Chile. Surface temperature data are available through the entire study period. Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data first became available in September 1997 during a relaxation in El Nino conditions identified by in situ hydrographic data. Over the time period of coincident satellite data, chlorophyll patterns closely track surface temperature patterns. Increases both in nearshore chlorophyll concentration and in cross-shelf extension of elevated concentrations are associated with decreased coastal temperatures during both the relaxation in El Nino conditions in September-November 1997 and the recovery from EI Nino conditions after March 1998. Between these two periods during austral summer (December 1997 to March 1998) and maximum El Nino temperature anomalies, temperature patterns normally associated with upwelling were absent and chlorophyll concentrations were minimal. Cross-shelf chlorophyll distributions appear to be modulated by surface temperature frontal zones and are positively correlated with a satellite-derived upwelling index. Frontal zone patterns and the upwelling index in 1996 imply an austral summer nearshore chlorophyll maximum, consistent with SeaWiFS data from I 1998-1999, after the El Nino. SeaWiFS retrievals in the data set used here are higher than in situ measurements by a factor of 2-4; however, consistency in the offset suggests relative patterns are valid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabajo realizado con la técnica de pastel o soft pastel, con soltura de trazos con carácter como si fuesen pinceladas, hacen resaltar la figura de la niña y sus atuendos tratados con efumino, que por contraste se enriquecen (figurativo, libre y gestual).