956 resultados para LINEAR-DEPENDENCE CONDITION
Resumo:
MBE regrowth on patterned np-GaAs wafers has been used to fabricate GaAs/AlGaAs double barrier resonant tunnel diodes with a side-gate in the plane of the quantum well. The physical diameters vary from 1 to 20 μm. For a nominally 1 μm diameter diode the peak current is reduced by more than 95% at a side-gate voltage of -2 V at 1.5 K, which we estimate corresponds to an active tunnel region diameter of 75 nm ± 10 nm. At high gate biases additional structure appears in the conductance data. Differential I-V measurements show a linear dependence of the spacing of subsidiary peaks on gate bias indicating lateral quantum confinement. © 1996 American Institute of Physics.
Resumo:
In this paper, the initial development of microdamage in material subjected to impulsive loading was investigated experimentally and analytically with controllable short-load duration. Based on a general solution to the statistical evolution of a one-dimensional system of ideal microcracks, a prerequisite to experimental investigation of nucleation of microcracks was derived. By counting the number of microcracks, the distribution of nucleation of microcracks was studied. The law of the nucleation rate of microcracks can be expressed as a separable function of stress and cracksize. It is roughly linear dependence on loading stress. The normalized number density of microcracks is in agreement with that of a second-phase particle.
Resumo:
We have applied the Schwinger Multichannel Method(SMC) to the study of electronically inelastic, low energy electron-molecule collisions. The focus of these studies has been the assessment of the importance of multichannel coupling to the dynamics of these excitation processes. It has transpired that the promising quality of results realized in early SMC work on such inelastic scattering processes has been far more difficult to obtain in these more sophisticated studies.
We have attempted to understand the sources of instability of the SMC method which are evident in these multichannel studies. Particular instances of such instability have been considered in detail, which indicate that linear dependence, failure of the separable potential approximation, and difficulties in converging matrix elements involving recorrelation or Q-space terms all conspire to complicate application of the SMC method to these studies. A method involving singular value decomposition(SVD) has been developed to, if not resolve these problems, at least mitigate their deleterious effects on the computation of electronically inelastic cross sections.
In conjunction with this SVD procedure, the SMC method has been applied to the study of the H_2 , H_2O, and N_2 molecules. Rydberg excitations of the first two molecules were found to be most sensitive to multichannel coupling near threshold. The (3σ_g → 1π_g ) and (1π_u → 1π_g) valence excitations of the N_2 molecule were found to be strongly influenced by the choice of channel coupling scheme at all collision energies considered in these studies.
Resumo:
Cooperative director fluctuations in lipid bilayers have been postulated for many years. ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements have been used identify these motions and to determine the origin of increased slow bilayer motion upon addition of unlike lipids or proteins to a pure lipid bilayer.
The contribution of cooperative director fluctuations to NMR relaxation in lipid bilayers has been expressed mathematically using the approach of Doane et al.^1 and Pace and Chan.^2 The T_2^(-1)’s of pure dimyristoyllecithin (DML) bilayers deuterated at the 2, 9 and 10, and all positions on both lipid hydrocarbon chains have been measured. Several characteristics of these measurements indicate the presence of cooperative director fluctuations. First of all, T_2^(-1) exhibits a linear dependence on S2/CD. Secondly, T_2^(-1) varies across the ^2H-NMR powder pattern as sin^2 (2, β), where , β is the angle between the average bilayer director and the external magnetic field. Furthermore, these fluctuations are restricted near the lecithin head group suggesting that the head group does not participate in these motions but, rather, anchors the hydrocarbon chains in the bilayer.
T_2^(-1)has been measured for selectively deuterated liquid crystalline DML hilayers to which a host of other lipids and proteins have been added. The T_2^(-1) of the DML bilayer is found to increase drastically when chlorophyll a (chl a) and Gramicidin A' (GA') are added to the bilayer. Both these molecules interfere with the lecithin head group spacing in the bilayer. Molecules such as myristic acid, distearoyllecithin (DSL), phytol, and cholesterol, whose hydrocarbon regions are quite different from DML but which have small,neutral polar head groups, leave cooperative fluctuations in the DML bilayer unchanged.
The effect of chl a on cooperative fluctuations in the DML bilayer has been examined in detail using ^2H-NMR T_1^(-1), T_(1P)^(-1) , and T_2^(-1); measurements. Cooperative fluctuations have been modelled using the continuum theory of the nematic state of liquid crystals. Chl a is found to decrease both the correlation length and the elastic constants in the DML bilayer.
A mismatch between the hydrophobic length of a lipid bilayer and that of an added protein has also been found to change the cooperative properties of the lecithin bilayer. Hydrophobic mismatch has been studied in a series GA' / lecithin bilayers. The dependence of 2H-NMR order parameters and relaxation rates on GA' concentration has been measured in selectively deuterated DML, dipalmitoyllecithin (DPL), and DSL systems. Order parameters, cooperative lengths, and elastic constants of the DML bilayer are most disrupted by GA', while the DSL bilayer is the least perturbed by GA'. Thus, it is concluded that the hydrophobic length of GA' best matches that of the DSL bilayer. Preliminary Raman spectroscopy and Differential Scanning Calorimetry experiments of GA' /lecithin systems support this conclusion. Accommodation of hydrophobic mismatch is used to rationalize the absence of H_(II) phase formation in GA' /DML systems and the observation of H_(II) phase in GA' /DPL and GA' /DSL systems.
1. J. W. Doane and D. L. Johnson, Chem. Phy3. Lett., 6, 291-295 (1970). 2. R. J. Pace and S. I. Chan, J. Chem. Phy3., 16, 4217-4227 (1982).
Resumo:
Since the discovery in 1962 of laser action in semiconductor diodes made from GaAs, the study of spontaneous and stimulated light emission from semiconductors has become an exciting new field of semiconductor physics and quantum electronics combined. Included in the limited number of direct-gap semiconductor materials suitable for laser action are the members of the lead salt family, i.e . PbS, PbSe and PbTe. The material used for the experiments described herein is PbTe . The semiconductor PbTe is a narrow band- gap material (Eg = 0.19 electron volt at a temperature of 4.2°K). Therefore, the radiative recombination of electron-hole pairs between the conduction and valence bands produces photons whose wavelength is in the infrared (λ ≈ 6.5 microns in air).
The p-n junction diode is a convenient device in which the spontaneous and stimulated emission of light can be achieved via current flow in the forward-bias direction. Consequently, the experimental devices consist of a group of PbTe p-n junction diodes made from p –type single crystal bulk material. The p - n junctions were formed by an n-type vapor- phase diffusion perpendicular to the (100) plane, with a junction depth of approximately 75 microns. Opposite ends of the diode structure were cleaved to give parallel reflectors, thereby forming the Fabry-Perot cavity needed for a laser oscillator. Since the emission of light originates from the recombination of injected current carriers, the nature of the radiation depends on the injection mechanism.
The total intensity of the light emitted from the PbTe diodes was observed over a current range of three to four orders of magnitude. At the low current levels, the light intensity data were correlated with data obtained on the electrical characteristics of the diodes. In the low current region (region A), the light intensity, current-voltage and capacitance-voltage data are consistent with the model for photon-assisted tunneling. As the current is increased, the light intensity data indicate the occurrence of a change in the current injection mechanism from photon-assisted tunneling (region A) to thermionic emission (region B). With the further increase of the injection level, the photon-field due to light emission in the diode builds up to the point where stimulated emission (oscillation) occurs. The threshold current at which oscillation begins marks the beginning of a region (region C) where the total light intensity increases very rapidly with the increase in current. This rapid increase in intensity is accompanied by an increase in the number of narrow-band oscillating modes. As the photon density in the cavity continues to increase with the injection level, the intensity gradually enters a region of linear dependence on current (region D), i.e. a region of constant (differential) quantum efficiency.
Data obtained from measurements of the stimulated-mode light-intensity profile and the far-field diffraction pattern (both in the direction perpendicular to the junction-plane) indicate that the active region of high gain (i.e. the region where a population inversion exists) extends to approximately a diffusion length on both sides of the junction. The data also indicate that the confinement of the oscillating modes within the diode cavity is due to a variation in the real part of the dielectric constant, caused by the gain in the medium. A value of τ ≈ 10-9 second for the minority- carrier recombination lifetime (at a diode temperature of 20.4°K) is obtained from the above measurements. This value for τ is consistent with other data obtained independently for PbTe crystals.
Data on the threshold current for stimulated emission (for a diode temperature of 20. 4°K) as a function of the reciprocal cavity length were obtained. These data yield a value of J’th = (400 ± 80) amp/cm2 for the threshold current in the limit of an infinitely long diode-cavity. A value of α = (30 ± 15) cm-1 is obtained for the total (bulk) cavity loss constant, in general agreement with independent measurements of free- carrier absorption in PbTe. In addition, the data provide a value of ns ≈ 10% for the internal spontaneous quantum efficiency. The above value for ns yields values of tb ≈ τ ≈ 10-9 second and ts ≈ 10-8 second for the nonradiative and the spontaneous (radiative) lifetimes, respectively.
The external quantum efficiency (nd) for stimulated emission from diode J-2 (at 20.4° K) was calculated by using the total light intensity vs. diode current data, plus accepted values for the material parameters of the mercury- doped germanium detector used for the measurements. The resulting value is nd ≈ 10%-20% for emission from both ends of the cavity. The corresponding radiative power output (at λ = 6.5 micron) is 120-240 milliwatts for a diode current of 6 amps.
Resumo:
An acoustic plasmon is predicted to occur, in addition to the conventional two-dimensional (2D) plasmon, as the collective motion of a system of two types of electronic carriers coexisting in the same 2D band of extrinsic (doped or gated) graphene. The origin of this novel mode stems from the anisotropy present in the graphene band structure near the Dirac points K and K'. This anisotropy allows for the coexistence of carriers moving with two distinct Fermi velocities along the Gamma K and Gamma K' directions, which leads to two modes of collective oscillation: one mode in which the two types of carriers oscillate in phase with one another (this is the conventional 2D graphene plasmon, which at long wavelengths (q -> 0) has the same dispersion, q(1/2), as the conventional 2D plasmon of a 2D free electron gas), and the other mode found here corresponds to a low-frequency acoustic oscillation (whose energy exhibits at long-wavelengths a linear dependence on the 2D wavenumber q) in which the two types of carriers oscillate out of phase. This prediction represents a realization of acoustic
Resumo:
We assume that the resistance matrix can be found in electrical impedance tomography from the assumption of linear dependence between the voltages and the currents and with the help of the resistance matrix and the transfer impedance between the electrodes, a directional algebraic reconstruction technique is proposed. The goal is to reconstruct the resistivity distribution by weighting the matrices that are obtained by calculating the orthogonal distance of the underlying mesh elements from the neighbouring port resistivity lines. These weighting matrices, which only depend on the topology of the underlying mesh, can be calculated offline and result in a computationally efficient online procedure with a reasonable image reconstruction performance. Simulation results are provided to validate this approach.
Resumo:
This paper investigates the performance of diode temperature sensors when operated at ultra high temperatures (above 250°C). A low leakage Silicon On Insulator (SOI) diode was designed and fabricated in a 1 μm CMOS process and suspended within a dielectric membrane for efficient thermal insulation. The diode can be used for accurate temperature monitoring in a variety of sensors such as microcalorimeters, IR detectors, or thermal flow sensors. A CMOS compatible micro-heater was integrated with the diode for local heating. It was found that the diode forward voltage exhibited a linear dependence on temperature as long as the reverse saturation current remained below the forward driving current. We have proven experimentally that the maximum temperature can be as high as 550°C. Long term continuous operation at high temperatures (400°C) showed good stability of the voltage drop. Furthermore, we carried out a detailed theoretical analysis to determine the maximum operating temperature and exlain the presence of nonlinearity factors at ultra high temperatures. © 2008 IEEE.
Resumo:
A simple laser refractometer based on the detection of the critical angle for liquids is presented. The calibrated refractometer presents up to 0.000 11 of uncertainty when the refractive index is in the range between 1.300 00 and 1.340 00. The experimental setup is easy to construct and the material needed is available at most optics laboratories. The calibration method is simple and can be used in other devices. The refractive index measurements in aqueous solutions of sodium chloride were carried out to test the device and a linear dependence between the refractive index and the salt concentration was found. © 2006 American Institute of Physics.
Resumo:
In-plane optical anisotropy (IPOA) in (001) GaAs/AlGaAs superlattice induced by uniaxial strain has been investigated by reflectance difference spectroscopy (RDS). Uniaxial strain on the order of 10(-4) was introduced by bending a strip sample with a stress apparatus. The IPOA of all interband transitions shows a linear dependence on strain. The birefringence and dichroism spectra induced by strain are obtained by RDS on the basis of a three-phase model, which is in good agreement with the reported results. (c) 2006 American Institute of Physics.
Resumo:
For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy-and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavy-and light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.
Resumo:
In this paper we propose a new method for measuring the thickness of the GaN epilayer, by using the ratio of the integrated intensity of the GaN epilayer X-ray diffraction peaks to that of the sapphire substrate ones. This ratio shows a linear dependence on the GaN epilayer thickness up to 2 mum. The new method is more accurate and convenient than those of using the relationship between the integrated intensity of GaN epilayer diffraction peaks and the GaN thickness. Besides, it can eliminate the absorption effect of the GaN epilayer.
Resumo:
Structural and optical investigations of InAs QDs grown on GaAs (3 1 1)A by molecular beam epitaxy (MBE) were reported. InAs/GaAs (3 1 1)A QDs with nonconventional, faceted, arrowhead-like shapes aligned in the [ - 2 3 3] direction have been disclosed by AFM image. Low defect and dislocation density on the QDs interfaces were indicated by the linear dependence of photoluminescence (PL) intensity on the excitation power. The fast red shift of PL energy and the monotonic decrease of FWHM with increasing temperature were observed and explained by carriers being thermally activated to the energy barrier produced by the wetting layer and then retrapped and recombined in energetically low-lying QDs states. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We use a polarizer to investigate quantum-well infrared absorption, and report experimental results as follows. The intrasubband transition was observed in GaAs/AlxGa1-xAs multiple quantum wells (MQWs) when the incident infrared radiation (IR) is polarized parallel to the MQW plane. According to the selection rule, an intrasubband transition is forbidden. Up to now, most studies have only observed the intersubband transition between two states with opposite parity. However, our experiment shows not only the intersubband transitions, but also the intrasubband transitions. In our study, we also found that for light doping in the well (4x10(18) cm(-3)), the intrasubband transition occurs only in the lowest subband, while for the heavy doping (8x10(18) cm(-3)), such a transition occurs not only in the lowest subband, but also in the first excited one, because of the electron subband filling. Further experimental results show a linear dependence of the intrasubband transition frequency on the root of the well doping density. These data are in good agreement with our numerical results. Thus we strongly suggest that such a transition can be attributed to plasma oscillation. Conversely, when the incident IR is polarized perpendicular to the MQW plane, intersubband-transition-induced signals appear, while the intrasubband-transition-induced spectra disappear for both light and heavy well dopings. A depolarization blueshift was also taken into account to evaluate the intersubband transition spectra at different well dopings. Furthermore, we performed a deep-level transient spectroscopy (DLTS) measurement to determine the subband energies at different well dopings. A good agreement between DLTS, infrared absorption, and numerical calculation was obtained. In our experiment, two important phenomena are noteworthy: (1) The polarized absorbance is one order of magnitude higher than the unpolarized spectra. This puzzling result is well explained in detail. (2) When the IR, polarized perpendicular to the well plane, normally irradiates the 45 degrees-beveled edge of the samples, we only observed intersubband transition spectra. However, the intrasubband transition signals caused by the in-plane electric-field component are significantly absent. The reason is that such in-plane electric-field components can cancel each other out everywhere during the light propagating in the samples. The spectral widths of bound-to-bound and bound-to-continuum transitions were also discussed, and quantitatively compared to the relaxation time tau, which is deduced from the electron mobility. The relaxation times deduced from spectral widths of bound-to-bound and bound-to-continuum transitions are also discussed, and quantitatively compared to the relaxation time deduced from electron mobility. [S0163-1829(98)01912-2].
Resumo:
Silver impregnated H-ZSM-5 zeolite catalysts with silver loading from 3 to 15 wt.% were investigated for the selective catalytic reduction (SCR) of NOx with CH4 in the excess of oxygen. X-ray diffraction (XRD) and UV-Vis measurements established the structure of silver catalysts. A relationship between the structure of silver catalysts and their catalytic functions for the SCR of NOx by CH4 was clarified. The NO conversion to N-2 showed a S-shape dependence on the increase of Ag loading. No linear dependence of catalytic activity on the amount of silver ions in the zeolite cation sites was observed. Contrastively, the activity was significantly enhanced by the nano-sized silver particles formed on the higher Ag loading samples (greater than or equal to7 wt.%). Temperature programmed desorption (TPD) and temperature programmed reduction (TPR) studies showed that nano-silver particles provided much stronger adsorption centers for active intermediates NO3-(s) on which adsorbed NO3-(s) could be effectively reduced by the activated methane. Silver ions in the zeolite cation sites might catalyze the reaction through activation of CH4 at lower temperatures. Activated CH4 reacted with NO3-(s) adsorbed on nano-silver particles to produce N-2 and CO2. (C) 2003 Elsevier B.V. All rights reserved.