988 resultados para LATE PLEISTOCENE
Resumo:
Present climate in the Nafud desert of northern Saudi Arabia is hyper-arid and moisture brought by north-westerly winds scarcely reaches the region. The existence of abundant palaeolake sediments provides evidence for a considerably wetter climate in the past. However, the existing chronological framework of these deposits is solely based on radiocarbon dating of questionable reliability, due to potential post-depositional contamination with younger 14C. By using luminescence dating, we show that the lake deposits were not formed between 40 and 20 ka as suggested previously, but approximately ca 410 ka, 320 ka, 200 ka, 125 ka, and 100 ka ago. All of these humid phases are in good agreement with those recorded in lake sediments and speleothems from southern Arabia. Surprisingly, no Holocene lake deposits were identified. Geological characteristics of the deposits and diatom analysis suggest that a single, perennial lake covered the entire south-western Nafud ca 320 ka ago. In contrast, lakes of the 200 ka, 125 ka, and 100 ka humid intervals were smaller and restricted to interdune depressions of a pre-existing dune relief. The concurrent occurrence of humid phases in the Nafud, southern Arabia and the eastern Mediterranean suggests that moisture in northern Arabia originated either from the Mediterranean due to more frequent frontal depression systems or from stronger Indian monsoon circulation, respectively. However, based on previously published climate model simulations and palaecolimate evidence from central Arabia and the Negev desert, we argue that humid climate conditions in the Nafud were probably caused by a stronger African monsoon and a distinct change in zonal atmospheric circulation.
Resumo:
Early American crania show a different morphological pattern from the one shared by late Native Americans. Although the origin of the diachronic morphological diversity seen on the continents is still debated, the distinct morphology of early Americans is well documented and widely dispersed. This morphology has been described extensively for South America, where larger samples are available. Here we test the hypotheses that the morphology of Early Americans results from retention of the morphological pattern of Late Pleistocene modern humans and that the occupation of the New World precedes the morphological differentiation that gave rise to recent Eurasian and American morphology. We compare Early American samples with European Upper Paleolithic skulls, the East Asian Zhoukoudian Upper Cave specimens and a series of 20 modern human reference crania. Canonical Analysis and Minimum Spanning Tree were used to assess the morphological affinities among the series, while Mantel and Dow-Cheverud tests based on Mahalanobis Squared Distances were used to test different evolutionary scenarios. Our results show strong morphological affinities among the early series irrespective of geographical origin, which together with the matrix analyses results favor the scenario of a late morphological differentiation of modern humans. We conclude that the geographic differentiation of modern human morphology is a late phenomenon that occurred after the initial settlement of the Americas. Am J Phys Anthropol 144:442-453, 2011. (c) 2010 Wiley-Liss, Inc.
Resumo:
Freshwater sponge spicules were analyzed as a paleoenvironmental proxy indicator in five cores of ponds and alluvial fan sediments in the Upper Paraná River's left bank, near Querência do Norte town, northwestern of State of Paraná, southern Brazil. Two optically stimulated luminescence (OSL) dates were obtained from sediments of ponds and one radiocarbon (14C) date was obtained from the alluvial fan. Microscopic analysis of spicules preserved in the sediments allowed a determination of freshwater sponge species. The species assemblage provides evidence for dominantly dry conditions in the Upper Paraná River during the Late Pleistocene. A wetter climate phase was recognized at 14C 7,540 yrs BP, with alluvial fan formation commencing at the transition of the dry Pleistocene climate to the Early Holocene wet climate. This wet interval was characterized by a sponge assemblage marked by the presence of the Neotropical families and typically associated with lotic environments. Sponge spicules analysis from pond sediments reject the possibility that lotic environments contributed to pond genesis and evolution. © 2013 by the Sociedade Brasileira de Paleontologia.
Resumo:
Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L,Amoako PYO, et al. (2007) Proc Natl Acad SciUSA104:16416–16421]. This resulted in extraordinarily low lake levels, even in Africa’s deepest lakes.On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (<400 mm>/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706mdeep, was reduced to an ~125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (~35–15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa.
Resumo:
The analysis of diatoms from two lake-sediment cores from southwestern Tasmania that span the Pleistocene-Holocene boundary provides insight about paleolimnological and paleoclimatic change in this region. Both Lake Vera (550 m elevation), in west-central Tasmania, and Eagle Tarn (1,033 m elevation), in south-central Tasmania, have lacustrine records that begin about 12,000 years ago. Despite significant differences in location, elevation, and geologic terrane, both lakes have, had similar, as well as synchronous, limnological histories. Each appears to have been larger and more alkaline 12,000 years ago than at present, and both became shallower through time. Fossil diatom assemblages about 11,500 years old indicate shallow-water environments that fluctuated in pH between acidic and alkaline, and between dilute and possibly slightly saline hydrochemical conditions ( The synchroneity and similar character of the paleolimnological changes at these separate and distinctive sites suggests a regional paleoclimatic cause rather than local environmental effects. Latest Pleistocene climates were apparently more continental and drier than Holocene climates in southwestern Tasmania.
Resumo:
A glacier–climate model was used to calculate climatic conditions in a test site on the east Andean slope around Cochabamba (17°S, Bolivia) for the time of the maximum Late Pleistocene glaciation. Results suggest a massive temperature reduction of about − 6.4 °C (+ 1.4/− 1.3 °C), combined with annual precipitation rates of about 1100 mm (+ 570 mm/− 280 mm). This implies no major change in annual precipitation compared with today. Summer precipitation was the source for the humidity in the past, as is the case today. This climate scenario argues for a maximum advance of the paleo-glaciers in the eastern cordillera during the global Last Glacial Maximum (LGM, 20 ka BP), which is confirmed by exposure age dates. In a synthesized view over the central Andes, the results point to an increased summer precipitation-driven Late Glacial (15–10 ka BP) maximum advance in the western part of the Altiplano (18°S–23°S), a temperature-driven maximum advance during full glacial times (LGM) in the eastern cordillera, and a pre- and post-LGM (32 ka BP/14 ka BP) maximum advance around 30°S related to increased precipitation and reduced temperature on the western slope of the Andes. The results indicate the importance of understanding the seasonality and details of the mass balance–climate interaction in order to disentangle drivers for the observed regionally asynchronous past glaciations in the central Andes.