35 resultados para LAPONITE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of clay chemistry has been approached with three aims: - to modify the conducting properties by intercalation of tetrathiafulvalene, - to study the electrochemistry of redox-active coordination compounds immobilised on clay coated electrodes, and - to study the role of clays as reagents in inorganic glass forming reactions using mainly solid-state magic-angle-spinning NMR. TTF was intercalated by smectites containing different interlayer and lattice cations. Evidence from ESR and 57Fe Mossbauer indicated charge-transfer from TTF to structural iron in natural montmorillonite, and to interlayer Cu2+ in Cu2+ exchanged laponite. No charge transfer was observed for laponite (Na+ form) itself. Ion exchange of TTF3(BF4)2 with laponite was found to proceed quantitatively. The intercalated species were believed to be (TTF)2+ dimers. Conductivity data showed an order of magnitude increase for the intercalated clays. The mechanism is thought to be ionic rather than CT as Na+ laponite showed a similar enhancement in conductivity. Mechanically robust colloidal clay films were prepared on platinum electrodes. After immersion in solutions containing redox active complexes [Co(bpy)3]3+ and [Cr(bpy)3]3+, the films became electroactive when a potential was applied. Cyclic voltammograms obtained for both complexes were found to be of the diffusion controlled type. For [Co(bpy)3]3+ immobilised on clay coated electrodes, a one-step oxidation and four-step reduction wave was observed corresponding to a one electron stepwise reversible reduction of Co(III), through Co(II), Co(I), Co(O) to Co(I) oxidation state. For [Cr(bpy)3]3+ the electrochemistry was complicated by the presence of additional waves corresponding to the dissociation of [Cr(bpy)3]3+ into the diaquo complex. ESR and diffuse reflectance data supported such a mechanism. 29Si, 27Al and 23Na MAS NMR spectroscopy, supported by powder XRD and FTIR, was used to probe the role of clays as reagents in glass forming reactions. 29Si MAS NMR was found to be a very sensitive technique for identifying the presence and relative abundance of crystalline and non-crystalline phases. In thermal reactions of laponite formation of new mineral phases such as forsterite, akermanite, sillimanite and diopside were detected. The relative abundance of each phase was dependent on thermal history, chemical nature and concentration of the modifier oxide present. In continuing work, the effect of selected oxides on the glass forming reactions of a model feldspar composition was investigated using solid state NMR alone. Addition of network modifying oxides generally produced less negative 29Si chemical shifts and larger linewidths corresponding to a wider distribution of Si-O-Si bond angles and lengths, and a dominant aluminosilicate phase with a less polymerised structure than the starting material. 29Si linewidths and 27Al chemical shifts were respectively correlated with cationic potential and Lewis acidity of the oxide cations. Anomalous Al(4) chemical shifts were thought to be due to precipitation of aluminate phases rather than a breakdown in Lowenstein's aluminium avoidance principle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Clay minerals, both natural and synthetic, have a wide range of applications. Smectite clays are not true insulators, their slight conductivity has been utilized by the paper industry in the development of mildly conducting paper. In particular, the synthetic hectorite clay, laponite, is employed to produce paper which is used in automated drawing offices where electro graphic printing is common. The primary objective of this thesis was to modify smectite clays, particularly laponite, to achieve enhanced conductivity. The primary objective was more readily achieved if the subsidiary objective of understanding the mechanism of conductivity was defined. The cyclic voltammograms of some cobalt complexes were studied in free solution and as clay modified electrodes to investigate the origin of electroactivity in clay modified electrodes. The electroactivity of clay modified electrodes prepared using our method can be attributed to ion pairs sorbed to the surface of the electrode, in excess of the cationic exchange capacity. However, some new observations were made concerning the co-ordination chemistry of the tri-2-pyridylamine complexes used which needed clarification. The a.c. conductivity of pressed discs of laponite RD was studied over the frequency range 12Hz- 100kHz using three electrode systems namely silver-loaded epoxy resin (paste), stainless-steel and aluminium. The a. c. conductivity of laponite consists of two components, reactive (minor) and ionic (major) which can be observed almost independently by utilizing the different electrode systems. When the temperature is increased the conductivity of laponite increases and the activation energy for conductivity can be calculated. Measurement of the conductivity of thin films of laponite RD in two crystal planes shows a degree of anisotropy in the a.c. conductivity. Powder X-ray diffraction and 119Sn Mossbauer spectroscopy studies have shown that attempts to intercalate some phenyltin compounds into laponite RD under ambient conditions result in the formation of tin(IV) oxide pillars. 119Sn Mossbauer data indicate that the order of effectiveness of conversion to pillars is in the order: Ph3SnCl > (Ph3Sn)2O, Ph2SnCl2 The organic product of the pillaring process was identified by 13C m.a.s.n.m.r. spectroscopy as trapped in the pillared lattice. This pillaring reaction is much more rapid when carried out in Teflon containers in a simple domestic microwave oven. These pillared clays are novel materials since the pillaring is achieved via neutral precursors rather than sacrificial reaction of the exchangeable cation. The pillaring reaction depends on electrophilic attack on the aryl tin bond by Brønsted acid sites within the clay. Two methods of interlamellar modification were identified which lead to enhanced conductivity of laponite, namely ion exchange and tin(IV) oxide pillaring. A monoionic potassium exchanged laponite shows a four fold increase in a.c. conductivity compared to sodium exchanged laponite RD. The increased conductivity is due to the appearence of an ionic component. The conductivity is independent of relative humidity and increases with temperature. Tin(IV) oxide pillared laponite RD samples show a significant increase in conductivity. Samples prepared from Ph2SnCl2 show an increase in excess of an order of magnitude. The conductivity of tin(IV) oxide pillared laponite samples is dominated by an ionic component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthetic hectorite, laponite has been used within the paper industry to produce mildly conducting paper for use in electrographic printing. The aim of this research was to modify laponite in order to improve the electrical conductivity. In a continuation of a previous investigation involving organotin intercalation of laponite, the organotin precursor (p-CH3,OC6H4)4Sn was synthesised and characterised using Mass Spectroscopy, Infrared Spectroscopy and elemental analysis. Results of intercalation with this compound and a range of organobismuth and organoantimony compounds suggested that a halide content within the precursor was necessary for improvement in conductivity to be observed. Organometallic intercalation of a range of organotellurium compounds with laponite provided evidence that a hydrolysis reaction on the clay surface followed by the release of hydrochloric acid was an important first step if a reaction was to occur with the clay. Atomic Absorption Spectroscopy studies have shown that the acid protons underwent exchange with the interlayer sodium ions in the clay to varying degrees. Gas-liquid Chromatography and Infrared Spectroscopy revealed that the carbon-tellurium bond remained intact. Powder X-ray diffraction revealed that there had been no increase in the basal spacing. The a.c. conductivity of the modified clays in the form of pressed discs was studied over a frequency range of 12Hz - 100kHz using two electrode systems, silver paste and stainless steel. The a.c. conductivity consists of two components, ionic and reactive. The conductivity of laponite was increased by intercalation with organometallic compounds. The most impressive increase was gained using the organotellurium precursor (p-CH3OC6H4)2TeCl2. Conductivity investigations using the stainless steel electrode where measurements are made under pressure showed that in the case of laponite, where poor particle-particle contact exists at ambient pressure, there is a two order of magnitude increase in the measured a.c. conductivity. This significant increase was not seen in modified laponites where the particle-particle contact had already been improved upon. Investigations of the clay surface using Scanning Electron Microscopy suggested that the improvement in particle-particle contact is the largest factor in the determination of the conductivity. The other important factor is the nature and the concentration of the interlayer cations. A range of clays were synthesised in order to increase the concentration of sodium interlayer cations. A sol-gel method was employed to carry out these syntheses. A conductivity evaluation showed that increasing the concentration of the sodium cations within the clay led to an increase in the conductivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium - lithium alloys are specialist alloys used exclusively by the aerospace industry. They have properties that are favourable to the production of modern military aircraft. The addition of approximately 2.5 percent lithium to aluminium increases the strength characteristics of the new alloys by 10 percent. The same addition has the added advantage of decreasing the density of the resulting alloy by a similar percentage. The disadvantages associated with this alloy are primarily price and castability. The addition of 2.5 weight percent lithium to aluminium results in a price increase of 100% explaining the aerospace exclusivity. The processability of the alloys is restricted to ingot casting and wrought treatment but for complex components precision casting is required. Casting the alloys into sand and investment moulds creates a metal - mould reaction, the consequences of which are intolerable in the production of military hardware. The primary object of this project was to investigate and characterise the reactions occurring between the newly poured metal and surface of the mould and to propose a method of counteracting the metal - mould reaction. The constituents of standard sand and investment moulds were pyrolised with lithium metal in order to simplify the complex in-mould reaction and the products were studied by the solid state techniques of powder X-Ray diffraction and magic angle spinning nuclear magnetic resonance spectroscopy. The results of this study showed that the order of reaction was: Organic reagents> > Silicate reagents> Non silicate reagents Alphaset and Betaset were the two organic binders used to prepare the sand moulds throughout this project. Studies were carried out to characterise these resins in order to determine the factors involved in their reaction with lithium. Analysis revealed that during the curing process the phenolic hydroxide groups are not reacted out and that a redox reaction takes place between these hydroxides and the lithium in the molten alloys. Casting experiments carried out to assess the protection afforded by various hydroxide protecting agents showed that modern effective, protecting chemicals such as bis-trimethyl silyl acetamide and hexamethyldisilazane did not inhibit the metal - mould reaction to a sufficiently high standard and that tri-methylchlorosilane was consistently the best performer. Tri-methyl chlorosilane has a simple functionalizing mechanism compared to other hydroxide protecting reagents and this factor is responsible for its superior inhibiting qualities. Comparative studies of 6Li and 7Li N.M.R. spectra (M.A.S. and `off angle') establish that, for solid state (and even solution) analytical purposes 6Li is the preferred nucleus. 6Li M.A.S.N.M.R. spectra were obtained for thermally treated laponite clay. At temperatures below 800oC both dehydrated and rehydrated samples were considered. The data are consistent with mobility of lithium ions from the trioctahedral clay sites at 600oC. The superior resolution achievable in 6Li M.A.S.N.M.R. is demonstrated in the analysis of a microwave prepared lithium exchanged clay where 6Li spectroscopy revelaed two lithium sites in comparison to 7Li M.A.S.N.M.R. which gave only a single lithium resonance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The U.S. Department of Energy (DOE) needs a design basis to properly design a PJM and ventilation systems for the Waste Treatment Plant vessels. In order to meet DOE's needs for proper ventilation and PJM design technologies, Florida International University's Hemispheric Center for Environmental Technology (FIU-HCET) has studied the properties for gas holdup in selected non Newtonian fluids with physicochemical properties comparable to nuclear waste. The primary purpose of this research was to study the holdup properties of selected non - Newtonian simulants and quantify the level of gas holdup in selected simulants using continuous argon injection in five gallons vessel. Gas holdup tests involved the injection of gas bubbles in simulant waste in scaled prototypic vessels. The holdup was measured as a function of injection rate in the vessel. Tests were performed with both Laponite, Clay 12%, Clay 27% and Qard 13.5. This work showed that the percentage of holdup was about 3% for all simulants despite the significant differences in rheology.