964 resultados para L1 Adaptive Controller
Resumo:
Successful results from training an adaptive controller to use optical information to balance an inverted pendulum are presented in comparison to the training requirements using traditional controller inputs. Results from research into the psychology of the sense of balance in humans are presented as the motivation for the investigation of this new type of controller. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training time for the adaptive controller and reduced performance (measured as the time the pendulum remains upright).
Resumo:
The results from applying a sensor fusion process to an adaptive controller used to balance all inverted pendulum axe presented. The goal of the sensor fusion process was to replace some of the four mechanical measurements, which are known to be sufficient inputs for a linear state feedback controller to balance the system, with optic flow variables. Results from research into the psychology of the sense of balance in humans were the motivation for the investigation of this new type of controller input. The simulated model of the inverted pendulum and the virtual reality environments used to provide the optical input are described. The successful introduction of optical information is found to require the preservation of at least two of the traditional input types and entail increased training till-le for the adaptive controller and reduced performance (measured as the time the pendulum remains upright)
Resumo:
In this thesis, it is developed the robustness and stability analysis of a variable structure model reference adaptive controller considering the presence of disturbances and unmodeled dynamics. The controller is applied to uncertain, monovariable, linear time-invariant plants with relative degree one, and its development is based on the indirect adaptive control. In the direct approach, well known in the literature, the switching laws are designed for the controller parameters. In the indirect one, they are designed for the plant parameters and, thus, the selection of the relays upper bounds becomes more intuitive, whereas they are related to physical parameters, which present uncertainties that can be known easier, such as resistances, capacitances, inertia moments and friction coefficients. Two versions for the controller algorithm with the stability analysis are presented. The global asymptotic stability with respect to a compact set is guaranteed for both cases. Simulation results under adverse operation conditions in order to verify the theoretical results and to show the performance and robustness of the proposed controller are showed. Moreover, for practical purposes, some simplifications on the original algorithm are developed
Resumo:
This thesis presents a new structure of robust adaptive controller applied to mobile robots (surface mobile robot) with nonholonomic constraints. It acts in the dynamics and kinematics of the robot, and it is split in two distinct parts. The first part controls the robot dynamics, using variable structure model reference adaptive controllers. The second part controls the robot kinematics, using a position controller, whose objective is to make the robot to reach any point in the cartesian plan. The kinematic controller is based only on information about the robot configuration. A decoupling method is adopted to transform the linear model of the mobile robot, a multiple-input multiple-output system, into two decoupled single-input single-output systems, thus reducing the complexity of designing the controller for the mobile robot. After that, a variable structure model reference adaptive controller is applied to each one of the resulting systems. One of such controllers will be responsible for the robot position and the other for the leading angle, using reference signals generated by the position controller. To validate the proposed structure, some simulated and experimental results using differential drive mobile robots of a robot soccer kit are presented. The simulator uses the main characteristics of real physical system as noise and non-linearities such as deadzone and saturation. The experimental results were obtained through an C++ program applied to the robot soccer kit of Microrobot team at the LACI/UFRN. The simulated and experimental results are presented and discussed at the end of the text
Resumo:
In this work is proposed an indirect approach to the DualMode Adaptive Robust Controller (DMARC), combining the typicals transient and robustness properties of Variable Structure Systems, more specifically of Variable Structure Model Reference Adaptive Controller (VS-MRAC), with a smooth control signal in steady-state, typical of conventional Adaptive Controllers, as Model Reference Adaptive Controller (MRAC). The goal is to provide a more intuitive controller design, based on physical plant parameters, as resistances, inertia moments, capacitances, etc. Furthermore, with the objective to follow the evolutionary line of direct controllers, it will be proposed an indirect version for the Binary Model Reference Adaptive Controller (B-MRAC), that was the first controller attemptting to act as MRAC as well as VS-MRAC, depending on a pre-defined fixed parameter
Resumo:
An alternative nonlinear technique for decoupling and control is presented. This technique is based on a RBF (Radial Basis Functions) neural network and it is applied to the synchronous generator model. The synchronous generator is a coupled system, in other words, a change at one input variable of the system, changes more than one output. The RBF network will perform the decoupling, separating the control of the following outputs variables: the load angle and flux linkage in the field winding. This technique does not require knowledge of the system parameters and, due the nature of radial basis functions, it shows itself stable to parametric uncertainties, disturbances and simpler when it is applied in control. The RBF decoupler is designed in this work for decouple a nonlinear MIMO system with two inputs and two outputs. The weights between hidden and output layer are modified online, using an adaptive law in real time. The adaptive law is developed by Lyapunov s Method. A decoupling adaptive controller uses the errors between system outputs and model outputs, and filtered outputs of the system to produce control signals. The RBF network forces each outputs of generator to behave like reference model. When the RBF approaches adequately control signals, the system decoupling is achieved. A mathematical proof and analysis are showed. Simulations are presented to show the performance and robustness of the RBF network
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
Nowadays robots have made their way into real applications that were prohibitive and unthinkable thirty years ago. This is mainly due to the increase in power computations and the evolution in the theoretical field of robotics and control. Even though there is plenty of information in the current literature on this topics, it is not easy to find clear concepts of how to proceed in order to design and implement a controller for a robot. In general, the design of a controller requires of a complete understanding and knowledge of the system to be controlled. Therefore, for advanced control techniques the systems must be first identified. Once again this particular objective is cumbersome and is never straight forward requiring of great expertise and some criteria must be adopted. On the other hand, the particular problem of designing a controller is even more complex when dealing with Parallel Manipulators (PM), since their closed-loop structures give rise to a highly nonlinear system. Under this basis the current work is developed, which intends to resume and gather all the concepts and experiences involve for the control of an Hydraulic Parallel Manipulator. The main objective of this thesis is to provide a guide remarking all the steps involve in the designing of advanced control technique for PMs. The analysis of the PM under study is minced up to the core of the mechanism: the hydraulic actuators. The actuators are modeled and experimental identified. Additionally, some consideration regarding traditional PID controllers are presented and an adaptive controller is finally implemented. From a macro perspective the kinematic and dynamic model of the PM are presented. Based on the model of the system and extending the adaptive controller of the actuator, a control strategy for the PM is developed and its performance is analyzed with simulation.
Resumo:
A new approach to optimisation is introduced based on a precise probabilistic statement of what is ideally required of an optimisation method. It is convenient to express the formalism in terms of the control of a stationary environment. This leads to an objective function for the controller which unifies the objectives of exploration and exploitation, thereby providing a quantitative principle for managing this trade-off. This is demonstrated using a variant of the multi-armed bandit problem. This approach opens new possibilities for optimisation algorithms, particularly by using neural network or other adaptive methods for the adaptive controller. It also opens possibilities for deepening understanding of existing methods. The realisation of these possibilities requires research into practical approximations of the exact formalism.
Resumo:
Synchronous machines, widely used in energy generation systems, require constant voltage and frequency to obtain good quality of energy. However, for large load variati- ons, it is difficult to maintain outputs on nominal values due to parametric uncertainties, nonlinearities and coupling among variables. Then, we propose to apply the Dual Mode Adaptive Robust Controller (DMARC) in the field flux control loop, replacing the tradi- tional PI controller. The DMARC links a Model Reference Adaptive Controller (MRAC) and a Variable Structure Model Reference Adaptive Controller (VS-MRAC), incorpora- ting transient performance advantages from VS-MRAC and steady state properties from MRAC. Moreover, simulation results are included to corroborate the theoretical studies.
Resumo:
This master thesis proposes a solution to the approach problem in case of unknown severe microburst wind shear for a fixed-wing aircraft, accounting for both longitudinal and lateral dynamics. The adaptive controller design for wind rejection is also addressed, exploiting the wind estimation provided by suitable estimators. It is able to successfully complete the final approach phase even in presence of wind shear, and at the same time aerodynamic envelope protection is retained. The adaptive controller for wind compensation has been designed by a backstepping approach and feedback linearization for time-varying systems. The wind shear components have been estimated by higher-order sliding mode schemes. At the end of this work the results are provided, an autonomous final approach in presence of microburst is discussed, performances are analyzed, and estimation of the microburst characteristics from telemetry data is examined.
Resumo:
This paper presents an off-line (finite time interval) and on-line learning direct adaptive neural controller for an unstable helicopter. The neural controller is designed to track pitch rate command signal generated using the reference model. A helicopter having a soft inplane four-bladed hingeless main rotor and a four-bladed tail rotor with conventional mechanical controls is used for the simulation studies. For the simulation study, a linearized helicopter model at different straight and level flight conditions is considered. A neural network with a linear filter architecture trained using backpropagation through time is used to approximate the control law. The controller network parameters are adapted using updated rules Lyapunov synthesis. The off-line trained (for finite time interval) network provides the necessary stability and tracking performance. The on-line learning is used to adapt the network under varying flight conditions. The on-line learning ability is demonstrated through parameter uncertainties. The performance of the proposed direct adaptive neural controller (DANC) is compared with feedback error learning neural controller (FENC).
Resumo:
This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.