996 resultados para L-carnitine
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
INTRODUCTION: Anabolic androgenic steroids (AAS) are frequently used by people whose aim to increase muscle mass to obtain a better performance in sports or improve physical appearance. AAS are synthetic derivatives of testosterone, able to promote muscle fibers hypertrophy, increasing intracellular protein synthesis. L-carnitine is a food supplement used to increase energetic production by means of fat acids oxidation. Although there are several works about physiological properties of these drugs, there are few studies about their mutagenic potential. OBJECTIVES: This work evaluated the clastogenicity and genotoxicity of nandrolone decanoate, testosterone decanoate and L-carnitine, in different treatments through the micronucleus test in polychromatic erythrocytes of Wistar rats. METHODS: The animals were submitted to different concentrations and associations of AAS. The positive control received cyclophosphamide 50 mg/kg by intraperitoneal injection and negative control, one ml of saline solution by gavage. The rats were sacrificed after 36 hours of latest application, having the femurs removed and the bone marrow extracted. Material was homogenized and centrifuged. Button cell was pipetted and transferred to slides, which were stained by Giemsa. 1,000 polychromatic erythrocytes were counted per animal, noting the frequency of micronuclei. RESULTS: The Kruskal-Wallis test was performed, with a significance level of 5%, which demonstrated that nandrolone decanoate - three doses of 0,2 mg/kg and 0,6 mg/kg, eight doses of 7,5 mg/kg, L-carnitine - seven doses of 0,4 ml/250 g and 1,5 ml/250 g, testosterone decanoate - 28 doses of 0,075 mg/kg, nandrolone decanoate - eight doses of 7,5 mg/kg associated to L-carnitine and 1 mL and nandrolone decanoate - eight doses of 7,5 mg/kg associated to testosterone decanoate - eight doses of 7,5 mg/kg, showed mutagenic potential. CONCLUSION: The treatments proved to be clastogenic, not being indicated like ergogenic aid.
Resumo:
Pós-graduação em Biotecnologia Animal - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Avaliar os efeitos da suplementação oral de L-carnitina associada ao treinamento físico e muscular respiratório na doença pulmonar obstrutiva crônica (DPOC). Participaram 14 voluntários com idade de 65±10,4 anos e diagnóstico clínico de DPOC moderado, classificados de acordo com a espirometria prévia. Os voluntários foram divididos em grupo treino esteira (GTE) e grupo treino muscular respiratório (GTMR). Realizaram o teste de caminhada de seis minutos (TC6'), teste de caminhada com carga progressiva (TCP), avaliação nutricional do índice de massa corpórea (IMC), dose diária recomendada de L-carnitina, pressões inspiratórias (PImáx) e expiratórias máximas (PEmáx). Fizeram 30 min de caminhada em esteira, 3 vezes/semana por 10 semanas, e o GTMR realizou, ainda, 10 min de treinamento muscular inspiratório (Threshold® IMT) e 10 min de treinamento muscular expiratório (Threshold® PEP) à 50% da PImáx e PEmáx ajustados semanalmente. Após 10 semanas, foram reavaliados. No TC6' pré e pós-programa de treinamento físico, as variáveis alteradas foram: distância percorrida (DP), frequência cardíaca (FC) final, pressão arterial sistólica (PAS) final, pressão arterial diastólica (PAD) final e Borg final no GTMR, no GTE as variáveis alteradas foram FC repouso, FC final, PAS final, Borg repouso e DP. Comparando os grupos no TC6, o GTE apresentou FC final, PAD final e Borg final maiores do que o GTMR na reavaliação; já no TCP, a FC final, PAS final, Borg final foram maiores no GTE, e DP foi maior no GTMR. Na avaliação respiratória, a PEmáx foi maior no GTMR na reavaliação. O treino aeróbio e suplementação de L-carnitina na DPOC otimizou a performance, a capacidade física e a tolerância ao esforço.
Resumo:
Previous findings in rats and in human vegetarians suggest that the plasma carnitine concentration and/or carnitine ingestion may influence the renal reabsorption of carnitine. We tested this hypothesis in rats with secondary carnitine deficiency following treatment with N-trimethyl-hydrazine-3-propionate (THP) for 2 weeks and rats treated with excess L-carnitine for 2 weeks. Compared to untreated control rats, treatment with THP was associated with an approximately 70% decrease in plasma carnitine and with a 74% decrease in the skeletal muscle carnitine content. In contrast, treatment with L-carnitine increased plasma carnitine levels by 80% and the skeletal muscle carnitine content by 50%. Treatment with L-carnitine affected neither the activity of carnitine transport into isolated renal brush border membrane vesicles, nor renal mRNA expression of the carnitine transporter OCTN2. In contrast, in carnitine deficient rats, carnitine transport into isolated brush border membrane vesicles was increased 1.9-fold compared to untreated control rats. Similarly, renal mRNA expression of OCTN2 increased by a factor of 1.7 in carnitine deficient rats, whereas OCTN2 mRNA expression remained unchanged in gut, liver or skeletal muscle. Our study supports the hypothesis that a decrease in the carnitine plasma and/or glomerular filtrate concentration increases renal expression and activity of OCTN2.
Resumo:
L-carnitine is required for the transfer of long-chain fatty acids from the cytosol to the mitochondrial matrix for 13-oxidation of them and ractopamine, beta adrenergic agonists, have potential stimulating lipolysis and altering rates of protein degradation and synthesis. Present study was carried out to improve lipid body oxidation and protein-sparing action of fish through addition of L-carnitine and ractopamine to diet of rainbow trout, Oncorhynchus mykiss, Walbaum 1972. An eight-week feeding trial was carried out to evaluate the effects of supplementation of tree levels of L-carnitine tartrate (0, 1 and 2 g/kg) and two levels of ractopamine hydrochloride (0 and 10 ppm) on growth performance, fillet muscle fatty acid compositions and blood biochemical parameters in 288 juvenile rainbow trout (130 g) at 3X2 factorial experimental design. Ractopamine and 1 g/kg carnitine improved the specific growth rate, feed conversion ratio, protein efficiency ratio and weight gain at the end of experiment. The protein and lipid contents of fillet muscle were affected by the inclusion of 10 mg/kg ractopamine in the diet, increasing crude protein and reducing crude fat (P<0.05) of fish fillet muscle. The highest protein and lowest fat contents of fish fillet were observed in diet that contains 2 g/kg carnitine plus ractopamine. Ractopamine and carnitine increased levels of albumin, total protein and globulin in fish blood serum, but carnitine increased triacylglycerol and cholesterol. Fatty acids compositions of fish fillet were also affected by ractopamine and carnitine. All fatty acids except for eicosapentaenoic acid and docosahexaenoic acid, were increased by dietary supplementation of ractopamine. Total saturated fatty acids were not affected by carnitine. Supplementation (P>0.05). However, total n-3 poly unsaturated fatty acids were reduced by carnitine supplementation. A significant interaction was observed between ractopamine and carnitine supplementation regarding the saturated (P<0.01) and n-3 poly unsaturated fatty acid (P<0.001) of fish fillet. This study shows that supplementation of 1 g/kg carnitine and 10 ppm ractopamine could improve performance of juvenile rainbow trout and their combination in diet results in protein increment, fat reduction and change in profile of fatty acids in fillet muscle.
Resumo:
The industry has made available in the market a series of substances (nutraceuticals) which intent would be to optimize the use of nutrients in some metabolic paths, influencing positively reproductive performance in animals. However, the response to the use of nutraceuticals varies according to the animal. As the organism is highly complex and in order to achieve a perfect activity of the hypothalamic-pituitary-gonadal axis, an ideal interaction in molecular basis is needed, where the nutraceuticals can have their direct action. The aim of this study was to review the function and research results using the main nutraceuticals (β carotene, vitamin A, L-carnitine, omegas 3, 6 and 9 and Gamma-oryzanol) on reproductive characteristics of bulls and stallions.
Resumo:
Intermittent claudication (IC) is leg muscle pain, cramping and fatigue brought on by exercise and is the primary symptom of peripheral arterial disease. The goals of pharmacotherapy for IC are to increase the walking capacity/quality of life and to decrease rates of amputation. In 1988, pentoxifylline was the only drug that had reasonable supportive clinical trial evidence for being beneficial in IC. Since then a number of drugs have shown benefit or potential in IC. Cilostazol, a specific inhibitor of phosphodiesterase 3 and activator of lipoprotein lipase, clearly increases pain-free and absolute walking distances in claudicants. However, cilostazol does cause minor side effects including headache, diarrhoea, loose stools and flatulence. Naftidrofuryl, a serotonin (5-HT2) receptor antagonist and antiplatelet drug, is beneficial in claudicants. Inhibitors of platelet aggregation (including nitric oxide from L-arginine or glyceryl trinitrate) and anticoagulants (low molecular weight heparin, defibrotide) probably have both short and long-term benefits in IC. In addition, intravenous infusions of prostaglandins (PGs) PGE1 and PGI2 have an established role in severe peripheral arterial disease and the recent introduction of longer lasting and/or oral forms of the PGs makes them more likely to be useful in the IC associated with less severe forms of the disease. There are some exciting new approaches to the treatment of IC, including propionyl-L-carnitine and basic fibroblast growth factor (bFGF).
Resumo:
This study tested the hypotheses that skeletal muscle mitochondrial ATP production rate (MAPR) is impaired in patients with peripheral arterial disease (PAD) and that it relates positively to their walking performances. Seven untrained patients, eight exercise-trained patients and 11 healthy controls completed a maximal walking test and had muscle sampled from the gastrocnemius medialis muscle. Muscle was analysed for its MAPR in the presence of pyruvate, palmitoyl-L-carnitine or both, as well as citrate synthase (CS) activity. MAPRs were not different between untrained PAD and controls. In contrast, MAPRs (pyruvate) were significantly higher in trained PAD vs. controls. MAPR (pyruvate combinations) was also significantly higher in trained than untrained PAD muscle. MAPR and CS activity were highly correlated with walking performance in patients, but not in controls. These data do not support the hypothesis that isolated mitochondria are functionally impaired in PAD and demonstrate that the muscle mitochondrial capacity to oxidize carbohydrate is positively related to walking performance in these patients.
Resumo:
Hyperammonemia can be caused by various acquired or inherited disorders such as urea cycle defects. The brain is much more susceptible to the deleterious effects of ammonium in childhood than in adulthood. Hyperammonemia provokes irreversible damage to the developing central nervous system: cortical atrophy, ventricular enlargement and demyelination lead to cognitive impairment, seizures and cerebral palsy. The mechanisms leading to these severe brain lesions are still not well understood, but recent studies show that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy metabolism, nitric oxide synthesis, oxidative stress and signal transduction pathways. All in all, at the cellular level, these are associated with alterations in neuronal differentiation and patterns of cell death. Recent advances in imaging techniques are increasing our understanding of these processes through detailed in vivo longitudinal analysis of neurobiochemical changes associated with hyperammonemia. Further, several potential neuroprotective strategies have been put forward recently, including the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine, acetyl-L-carnitine, CNTF or inhibitors of MAPKs and glutamine synthetase. Magnetic resonance imaging and spectroscopy will ultimately be a powerful tool to measure the effects of these neuroprotective approaches.
Resumo:
The common feature of urea cycle diseases (UCD) is a defect in ammonium elimination in liver, leading to hyperammonemia. This excess of circulating ammonium eventually reaches the central nervous system, where the main toxic effects of ammonium occur. These are reversible or irreversible, depending on the age of onset as well as the duration and the level of ammonium exposure. The brain is much more susceptible to the deleterious effects of ammonium during development than in adulthood, and surviving UCD patients may develop cortical and basal ganglia hypodensities, cortical atrophy, white matter atrophy or hypomyelination and ventricular dilatation. While for a long time, the mechanisms leading to these irreversible effects of ammonium exposure on the brain remained poorly understood, these last few years have brought new data showing in particular that ammonium exposure alters several amino acid pathways and neurotransmitter systems, cerebral energy, nitric oxide synthesis, axonal and dendritic growth, signal transduction pathways, as well as K(+) and water channels. All these effects of ammonium on CNS may eventually lead to energy deficit, oxidative stress and cell death. Recent work also proposed neuroprotective strategies, such as the use of NMDA receptor antagonists, nitric oxide inhibitors, creatine and acetyl-l-carnitine, to counteract the toxic effects of ammonium. Better understanding the pathophysiology of ammonium toxicity to the brain under UCD will allow the development of new strategies for neuroprotection.
Resumo:
Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2x10(-201)), ABCG2 (p = 3.1x10(-26)), SLC17A1 (p = 3.0x10(-14)), SLC22A11 (p = 6.7x10(-14)), SLC22A12 (p = 2.0x10(-9)), SLC16A9 (p = 1.1x10(-8)), GCKR (p = 1.4x10(-9)), LRRC16A (p = 8.5x10(-9)), and near PDZK1 (p = 2.7x10(-9)). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0x10(-26)) and propionyl-L-carnitine (p = 5.0x10(-8)) concentrations, which in turn were associated with serum UA levels (p = 1.4x10(-57) and p = 8.1x10(-54), respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.
Resumo:
En aquest estudi s'ha determinat que al augmentar el ritme d'extraccions de semen es produeixen canvis en el patró d'absorció i secreció del fluid epididimari, que provoquen alteracions en la maduració epididimaria dels espermatozoides i un desenvolupament anòmal de la motilitat espermàtica. La concentració de glutamat i carnitina al fluid epididimari augmenten al llarg del conducte epididimari, alhora que la concentració de myo-inositol disminueix. El contingut de myo-inositol a l'interior dels espermatozoides disminueix, mentre que el contingut de glutamat augmenta a partir del caput distal i el contingut de carnitina no varia al llarg del conducte. S'ha determinat la presència de la ruta del poliol a l'epidídim de porcí. Els resultats obtinguts indiquen que la glucosa difon de la sang cap al fluid epididimari, és convertida a sorbitol per l'aldosa reductasa, i aquest sorbitol s'acumula al fluid luminal i és convertit a fructosa per l'acció de la sorbitol deshidrogenasa.