968 resultados para L-CYSTEINE
Resumo:
One gram of onion added to the food of rats inhibits significantly (p < 0.05) bone resorption as assessed by the urinary excretion of tritium released from bone of 9-week-old rats prelabeled with tritiated tetracycline from weeks 1 to 6. To isolate and identify the bone resorption inhibiting compound from onion, onion powder was extracted and the extract fractionated by column chromatography and medium-pressure liquid chromatography. A single active peak was finally obtained by semipreparative high-performance liquid chromatography. The biological activity of the various fractions was tested in vitro on the activity of osteoclasts to form resorption pits on a mineralized substrate. Medium, containing the various fractions or the pure compound, was added to osteoclasts of new-born rats settled on ivory slices. After 24 h of incubation, the tartrate-resistant acid phosphatase positive multinucleated cells, that is, osteoclasts, were counted. Subsequently, the number of resorption pits was determined. Activity was calculated as the ratio of resorption pits/osteoclasts and was compared to a negative control, that is, medium containing 10% fetal bovine serum only and to calcitonin (10(-12) M) as a positive control. Finally, a single peak inhibited osteoclast activity significantly (p < 0.05). The structure of this compound was elucidated with high-performance liquid chromatography-electrospray ionization-mass spectrometry, time-of-flight electrospray ionization mass spectrometry, and nuclear magnetic resonance spectroscopy. The single peak was identified as gamma-L-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide (GPCS). It has a molecular mass of 306 Da and inhibits dose-dependently the resorption activity of osteoclasts, the minimal effective dose being approximately 2 mM. As no other peak displayed inhibitory activity, it likely is responsible for the effect of onion on bone resorption.
Resumo:
The nature of an L-arginine-derived relaxing factor released from vascular smooth muscle cells cultured on microcarrier beads and stimulated for 20 h with interleukin 1 beta was investigated. Unlike the unstable relaxation elicited by authentic nitric oxide (NO) in a cascade superfusion bioassay system, the effluate from vascular smooth muscle cells induced a stable relaxation that was susceptible to inhibition by oxyhemoglobin. Three putative endogenous NO carriers mimicked this stable relaxing effect: S-nitroso-L-cysteine, low molecular weight dinitrosyl-iron complexes (DNICs), and the adduct of NG-hydroxy-L-arginine (HOArg) with NO. Inactivation of S-nitroso-L-cysteine by Hg2+ ions or trapping of DNICs with agarose-bound bovine serum albumin abolished their relaxing effects, whereas that of the vascular smooth muscle cell effluate remained unaffected. In addition, neither S-nitrosothiols nor DNICs were detectable in the effluate from these cells, as judged by UV and electron spin resonance (ESR) spectroscopy. The HOArg-NO adduct was instantaneously generated upon reaction of HOArg with authentic NO under bioassay conditions. Its pharmacological profile was indistinguishable from that of the vascular smooth muscle cell effluate, as judged by comparative bioassay with different vascular and nonvascular smooth muscle preparations. Moreover, up to 100 nM HOArg was detected in the effluate from interleukin 1 beta-stimulated vascular smooth muscle cells, suggesting that sufficient amounts of HOArg are released from these cells to spontaneously generate the HOArg-NO adduct. This intercellular NO carrier probably accounts for the stable L-arginine-derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells and also from other NO-producing cells, such as macrophages and neutrophils.
Resumo:
Kunitz-type (KT) protease inhibitors are low molecular weight proteins classically defined as serine protease inhibitors. We identified a novel secreted KT inhibitor associated with the gut and parenchymal tissues of the infective juvenile stage of Fasciola hepatica, a helminth parasite of medical and veterinary importance. Unexpectedly, recombinant KT inhibitor (rFhKT1) exhibited no inhibitory activity towards serine proteases but was a potent inhibitor of the major secreted cathepsin L cysteine proteases of F. hepatica, FhCL1 and FhCL2, and of human cathepsins L and K (Ki = 0.4 nM - 27 nM). FhKT1 prevented the auto-catalytic activation of FhCL1 and FhCL2 and formed stable complexes with the mature enzymes. Pull-down experiments from adult parasite culture medium showed that rFhKT1 interacts specifically with native secreted FhCL1, FhCL2 and FhCL5. Substitution of the unusual P1 Leu15 within the exposed reactive loop of FhKT1 for the more commonly found Arg (FhKT1Leu15/Arg15) had modest adverse effects on the cysteine protease inhibition but conferred potent activity against the serine protease trypsin (Ki = 1.5 nM). Computational docking and sequence analysis provided hypotheses for the exclusive binding of FhKT1 to cysteine proteases, the importance of the Leu15 in anchoring the inhibitor into the S2 active site pocket, and the inhibitor's selectivity towards FhCL1, FhCL2 and human cathepsins L and K. FhKT1 represents a novel evolutionary adaptation of KT protease inhibitors by F. hepatica, with its prime purpose likely in the regulation of the major parasite-secreted proteases and/or cathepsin L-like proteases of its host.
Resumo:
Atmospheric gas plasmas (AGPs) are able to selectively induce apoptosis in cancer cells, offering a promising alternative to conventional therapies that have unwanted side effects such as drug resistance and toxicity. However, the mechanism of AGP-induced cancer cell death is unknown. In this study, AGP is shown to up-regulate intracellular reactive oxygen species (ROS) levels and induce apoptosis in melanoma but not normal melanocyte cells. By screening genes involved in apoptosis, we identify tumor necrosis factor (TNF)-family members as the most differentially expressed cellular genes upon AGP treatment of melanoma cells. TNF receptor 1 (TNFR1) antagonist-neutralizing antibody specifically inhibits AGP-induced apoptosis signal, regulating apoptosis signal-regulating kinase 1 (ASK1) activity and subsequent ASK1-dependent apoptosis. Treatment of cells with intracellular ROS scavenger N-acetyl-l-cysteine also inhibits AGP-induced activation of ASK1, as well as apoptosis. Moreover, depletion of intracellular ASK1 reduces the level of AGP-induced oxidative stress and apoptosis. The evidence for TNF-signaling dependence of ASK1-mediated apoptosis suggests possible mechanisms for AGP activation and regulation of apoptosis-signaling pathways in tumor cells.
Resumo:
This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso- tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4α-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4α-CoIITAPc and 4α-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4α-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.
Resumo:
Microporous polybenzimidazole of 250–500 μm spherical bead size from Celanese has been reacted with epichlorohydrin and sodium hydroxide and the resulting product with pendant epoxy groups has been reacted with various chelating ligands in order to augment the metal sorption capacity and selectivity of the resin. The chelating ligands used include ethylenediamine, diethylenetriamine, diethanolamine, dimethylglyoxime, L-cysteine, thiourea, dithiooxamide, glyoxal-bis-2-hydroxyanil, salicylaldehyde-ethylenediimine, and glyoxal-bis-2-mercaptoanil. The aminolysis of the pendant epoxy groups with the oligoamines has been performed in pyridine under reflux conditions, while the addition reactions with the other ligands which are alkali soluble have been carried out at room temperature in a mixture of dioxane and aqueous KOH using tetra-n-butylammonium iodide as the phase transfer catalyst. The products are found to possess high capacity and selectivity in metal sorption depending on the ligand attached.
Resumo:
Serine hydroxymethyltransferase from mammalian and bacterial sources is a pyridoxal-5'-phosphate-containing enzyme, but the requirement of pyridoxal-5'-phosphate for the activity of the enzyme from plant sources is not clear. The specific activity of serine hydroxymethyltransferase isolated from mung bean (Vigna radiata) seedlings in the presence and absence of pyridoxal-5'-phosphate was comparable at every step of the purification procedure. The mung bean enzyme did not show the characteristic visible absorbance spectrum of pyridoxal-5'-phosphate protein. Unlike the enzymes from sheep, monkey, and human liver, which were converted to the apoenzyme upon treatment with L-cysteine and dialysis, the mung bean enzyme similarly treated was fully active. Additional evidence in support of the suggestion that pyridoxal-5'-phosphate may not be required for the mung bean enzyme was the observation that pencillamine, a well-known inhibitor of pyridoxal-5'-phosphate enzymes, did not perturb the enzyme spectrum or inhibit the activity of mung bean serine hydroxymethyltransferase. The sheep liver enzyme upon interaction with O-amino-D-serine gave a fluorescence spectrum with an emission maximum at 455 nm when excited at 360 nm. A 100-fold higher concentration of mung bean enzyme-O-amino-D-serine complex did not yield a fluorescence spectrum. The following observations suggest that pyridoxal-5'-phosphate normally present as a coenzyme in serine hydroxymethyltransferase was probably replaced in mung bean serine hydroxymethyltransferase by a covalently bound carbonyl group: (a) inhibiton by phenylhydrazine and hydroxylamine, which could not be reversed by dialysis and or addition of pyridoxal-5'-phosphate; (b) irreversible inactivation by sodium borohydride; (c) a spectrum characteristic of a phenylhydrazone upon interaction with phenylhydrazine; and (d) the covalent labeling of the enzyme with substrate/product serine and glycine upon reduction with sodium borohydride. These results indicate that in mung bean serine hydroxymethyltransferase, a covalently bound carbonyl group has probably replaced the pyridoxal-5'-phosphate that is present in the mammalian and bacterial enzymes.
Resumo:
Diaminopropionate ammonia-lyase gene from Escherichia coli and Salmonella typhimurium was cloned and the overexpressed enzymes were purified to homogeneity. The k(cat) Values, determined for the recombinant enzymes with DL-DAP, D-serine, and L-serine as substrates, showed that the enzyme from S. typhimurium was more active than that from E coli and the K-m values were found to be similar. The purified enzymes had an absorption maximum (lambda(max)) at 412 nm, typical of PLP dependent enzymes. A red shift in lambda(max) was observed immediately after the addition Of 10 MM DL-DAP, which returned to the original lambda(max) of 412 nm in about 4 min. This red shift might reflect the formation of an external aldimine and/or other transient intermediates of the reaction. The apoenzyme of E coli and S. typhimurium prepared by treatment With L-cysteine could be partially (60%) reconstituted by the addition of PLP. The holo, apo, and the reconstituted enzymes were shown to be present as homo dimers by size exclusion chromatography. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The optical rotatory features of the beta-structure of the polypeptides in non-aqueous solutions and films cast from these solutions have been investigated. The beta-structure of poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbo-bands of their films. The optical rotatory dispersion (ORD) and circular dichroism (CD) spectra of these polypeptides are found to be very similar in both film and solution. In solvents promoting the beta-structure, the polypeptides are characterized by CD troughs in the n-pi* transition region of the peptide chromophore. The ORD spectra are found to be positive in sign throughout the visible and accessible ultraviolet regions and are interpreted in terms of the possible existence of a relatively much larger positive pi-pi* CD bands as compared with the negative n-pi* band. The rotatory data obtained in the non-aqueous solution are compared with those obtained for other poly peptides in aqueous solutions, with respect to the type and extent of beta-structure present.
Resumo:
The specific side-chain orientations of the phenyl group in the polypeptides poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbobenzoxy-L-serine in the beta-structure have been studied by spectral measurements in solutions. All the three polypeptides exhibit aromatic CD bands, indicating the asymmetric placement of the side-chain phenyl rings when the polypeptide backbone takes up the antiparallel beta-structure. Supporting evidence for this is derived from n.m.r. spectra of the polypeptides, which show upfield shift of the phenyl protons due to the stacking of the aromatic rings. Molecular model building studies reveal the stacking of alternate phenyl groups along the polypeptide chain.
Resumo:
We report one-pot hydrothermal synthesis of nearly mono-disperse 3-mercaptopropionic acid capped water-soluble cadmium telluride (CdTe) quantum dots (QDs) using an air stable Te source. The optical and electrical characteristics were also studied here. It was shown that the hydrothermal synthesis could be tuned to synthesize nano structures of uniform size close to nanometers. The emissions of the CdTe QDs thus synthesized were in the range of 500-700 nm by varying the duration of synthesis. The full width at half maximum (FWHM) of the emission peaks is relatively narrow (40-90 nm), which indicates a nearly uniform distribution of QD size. The structural and optical properties of the QDs were characterized by transmission electron microscopy (TEM), photoluminescence (PL) and Ultraviolet-visible (UV-Vis) spectroscopy. The photoluminescence quenching of CdTe QDs in the presence of L-cysteine and DNA confirms its biocompatibility and its utility for biosensing applications. The room temperature current-voltage characteristics of QD film on ITO coated glass substrate show an electrically induced switching between states with high and low conductivities. The phenomenon is explained on the basis of charge confinement in quantum dots. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A specific blood coagulation factor X activator was purified from the venom of Ophiophagus hannah by gel filtration and two steps of FPLC Mono-Q column ion-exchange chromatography. It showed a single protein band both in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline polyacrylamide gel electrophoresis. The mol. wt was estimated to be 62,000 in non-reducing conditions and 64,500 in reducing conditions by SDS-PAGE. The isoelectric point was found to be pH 5.6. The enzyme had weak amidolytic activities toward CBS 65-25, but it showed no activities on S-2266, S-2302, thrombin substrate S-2238, plasmin substrate S-2251 or factor Xa substrate S-2222. It had no arginine esterase activity toward substrate benzoylarginine ethylester (BAEE). The enzyme activated factor X in vitro and the effect was absolutely Ca2+ dependent, with a Hill coefficient of 6.83. It could not activate prothrombin nor had any effect on fibrinogen and thus appeared to act specifically on factor X. The procoagulant activity of the enzyme was almost completely inhibited by serine protease inhibitors like PMSF, TPCK and soybean trypsin inhibitor; partially inhibited by L-cysteine. Metal chelator EDTA did not inhibit its procoagulant activity. These results suggest that the factor X activator from O. hannah venom is a serine protease.
Resumo:
Total alkaline phosphatase activity (APA) and soluble reactive phosphorus (SRP) concentrations were measured in municipal wastewater, and a shallow Chinese freshwater lake receiving it. Activities of Dissolved alkaline phosphatase ( ADAP) in overlying and interstitial water were also analyzed monthly at three sites for several years. The lake was enriched with SRP and alkaline phosphatase by discharge of the wastewater, indicating that the inclusion of APA for estimating water pollution was reasonable. Annual data showed that APA in coarser fraction was significantly higher at the site receiving more wastewaters, both in surface and overlying water, suggesting that resuspension of enzyme most likely occurred in the basin heavily discharged. ADAP was an order of magnitude higher in the wastewater than those in lake waters, and was generally higher in interstitial water, a feature more striking at the site receiving more discharges. Besides, it was irrespectively inhibited by Na2WO4, L-cysteine and EDTA-Na, but stimulated by Cu2+, Zn2+, CTAB and Triton X-100 in interstitial, overlying and surface waters. This similarity of responding patterns to the stressors indicated an analogy between dissolved alkaline phosphatase in water column and that in interstitial water, supporting the hypothesis that the polluted sediments act as source of dissolved alkaline phosphatase in eutrophic lakes.
Resumo:
磷脂酶AZ(PLA2)是蛇毒中含量较为丰富的一类作用于梭酷键的酶。迄今为止,己有多种形式的PLA2从不同地域、不同种属的蛇毒中得以纯化并进行了较为系统的研究。其中,以VipoXin为代表的异二聚体形式PLA2较为引人注目,原因在于这种形式不同于此类蛋白家族中的诸多其它个体。目前,己经有许多关于此异二聚体PL凡生物学特性的报道,包括对此类形式存在原因、活性变化、结构表现、系统进化等方面的讨论。然而至今,这种以异二聚体形式存在的PLA2仅发现于几种蛙亚科(ViperinaeSubfamily)蛇种的蛇毒中,其中就包括我国台湾岛的圆斑蜂蛇台湾亚种(Doboiarusselliiformosensis),而蝮亚科(CrotaiinaeSubfamil)蛇种的蛇毒至今却没有此类报道。我国大陆西南端接壤东南亚,存在于云南、福建一带的圆斑蛙蛇隶属圆斑蛙蛇泰国亚种(Daboiarusselliisiamensis),那么这种蛇毒中是否也含有异二聚体形式的PLA2呢?本工作就此疑问对云南产圆斑蛙蛇泰国亚种(D.r.siamensis)蛇毒中的PLA2进行了研究,结果得到三个新的PLAZ,分别命名为DRS-PLA2-I、DRS-PLA2-II和DRS-PLA2-III。其中,DRS-PLA2-I的分子量为13864.06Da,理论pI为4.56,PLA2活性为12.35μmol/mg/min;DRS-PLA2-II的分子量为13635.99Da,理论pI为8.74,PLA2活性为8.76μmol/mg/min;DRS-PLA2-III的分子量为13619.80Da,理论厂为4.61,无PLA2活性。这三个蛋白酶N端的30个氨基酸残基恰好和三个阳性克隆的cDNA序列推导的蛋白序列吻合,结合已经报道的PLA2蛋白家族蛋白序列的保守性表现,我们可以断定它们之间存在对应关系。分子系统学分析表明DRS-PLA2-II和DRS-PLA2-III在进化关系上和蛙亚科的异二聚体PLA2关系较近,并且二者酶活性分别与异二聚体PLA2的Normalchain和Inhibitorchain相一致,只是没有发现类似Vipoxin形式的异二聚体结合蛋白。这些分析表明DRS-PLA2-nORS-PLA2-III类似圆斑蛙蛇台湾亚种(D.r.forlnos翻s沽)中的PV-4/RV-7,是PLA2异二聚体的一种特殊形式,在进化上滞后于VinOXin。另夕卜本工作还相继从云南产菜花烙铁头(Trimeresrusjerdonii)蛇毒和湖南产烙铁头(Trimeresurusmucrosquamatus)蛇毒中分离得到Jerdonase和TmF。前者为一个丝氨酸蛋白酶性质的、具有纤维蛋白原水解作用和激肤释放酶原水解作用双重活性表现的、高分子量的份五brinogenase,其活性表现可以被PMSF彻底抑制,而EDTA对此却没有影响。其它的几种抑制剂如大豆胰蛋白酶抑制剂、l-cysteine、DTT对Jerdonase的活性表现也有不同程度的影响。在Jerdonase的这些生化特性上中,分子量的大小和对纤维蛋白酶水解的特性这两方面有别于蛇毒中诸多其它来源的同类蛋白;后者T淤为一个舒缓激肚增强肤(BradykninPQtentiatingPePtide,BPP),电离质谱分析表明其分子量为1110.7Da。此小肚氨基酸序列为促进舒缓激肚(Bradki垃n,BK)诱导的豚鼠回肠纵行肌收缩的活力单位为(1.13±0.3)(m留L),T妊抑制血管紧张素转化酶(ACE)对BK水解的半数抑制剂量IC50为2μg。比较已报道的从Agkistrodon属和Bothrops属中纯化得到的BPP氨基酸序列发现:BPP的N端都是特征性的pGlu,C端为IIe-Pro-Pro,有高度的保守性。另外,TmF是Trimeresurus属中此类小肤的首次纯化。总之,本研究对国产的几种常见蛇毒中的几种常见蛋白多肤进行了一定程度的探讨和分析,和相同类别的其它蛋白、多肤比较可以看到,有许多相同的地方,也有许多不同的表现,研究结果为相应领域的深入研究提供资料和思路。