179 resultados para Látex


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: In dentistry, alveolar bone resorption is a limiting factor in the well being of individuals directly interfering in the stomatognathic system, causing problems in the context of overall health. Aiming to promote biological methods that can stimulate bone regeneration, several biomimetic strategies have been developed by the use of diverse materials possible to the bone matrix, culminating in the development of techniques that promote such repair. Objective: This work is a comparative study of the performance of films made with latex as occlusive membrane for Guided Bone Regeneration (GBR) procedure in three preparations: Latex preserved in ammonia, produced by Latex rubber clones IAN873 and PR255 polymerized immediately after collection and without use ammonia as a preservative. Methods: Sixty Wistar rats were randomly divided into 4 groups of 15 animals in which bone defects of critical size (8mm diameter) were made surgically in the skull. Group A was treated by GBR through the membrane latex preserved with ammonia, Group B received the membrane made of latex from IAN873, Group C, the membrane clone PR255 and group D was not treated by GBR. After a period of 7, 15 and 50 days, 5 animals from each group were euthanized, and specimens containing bone defect collected for microscopic examination (descriptive histology and histomorphometry). Results: The results showed that after 50 days there was bone formation in higher proportions in group D (p <0.05, ANOVA followed by Tukey), suggesting that further experiments should be conducted to conclude about the presence of ammonia and the influence of kind of rubber. Conclusion: GOR is a procedure proven effective in the treatment of bone defects. Therefore, further experiments should be conducted to reach a conclusion regarding the presence of ammonia in the latex composition for the manufacture of membranes, as well as the difference induced by the species of rubber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUÇÃO: A alergia ao látex é um importante problema de saúde pública, especialmente em grupos de risco que têm contato frequente com este potente alérgeno. Este estudo estimou a prevalência e os fatores de risco para sensibilização ao látex em pacientes com mielomeningocele (MMC) submetidos a procedimentos cirúrgicos urológicos no HC-FMUSP. MÉTODOS: Foram selecionados pacientes com MMC submetidos a pelo menos uma cirurgia urológica, entre 2009 e 2014.Todos foram entrevistados e seus prontuários revisados. Uma amostra de sangue permitiu que a IgE específica ao látex, a K82, e seus recombinantes fossem investigados pelo método lmmunoCAP100 (kUa/L -1). A associação entre a exposição e o desfecho foi avaliada por meio de regressão logística de Poisson, Quiquadrado ou o teste exato de Fischer, para variáveis categóricas. O teste t de Student foi utilizado para comparar variáveis contínuas (nível de significância de 5%). Foram calculados a razão de prevalência (RP) e o intervalo de confiança de 95%. RESULTADOS: Foram identificados Duzentos e doze pacientes (51% do sexo masculino, 20,4 ± 6,4 anos de idade), 68 foram submetidos a pelo menos um procedimento urológico e 51 aceitaram participar (87,9%). Vinte e nove pacientes foram considerados não-sensibilizados (IgE específica para o látex :: a 0,7 kUa/L) e 22 sensibilizados ao látex com IgE > 0,7 kUa/L. Quando comparados os dois grupos, o sensibilizado apresentou um número de procedimentos cirúrgicos maior (11,6 ± 5,9 vs 7,2 ± 5,6) e dentre eles 48,3% apresentaram alguma alergia anterior contra 27,6% no grupo não sensibilizado. A sensibilização ao látex foi independentemente associada com alergia a produtos de látex (p = 0,014) e com o número de cirurgias anteriores (p = 0,032). A alergia ao látex tinha uma razão de prevalência de 2,87 (95% Cl: 1,24 a 6,65) ajustado para o número de cirurgias. Para cada procedimento cirúrgico, ajustado à alergia a produtos que contém látex, aumentou o risco para sensibilização em 4% (PR = 1,04; 95% CI: 1,00-1,09). CONCLUSÕES: A história de alergia ao látex e o número de cirurgias foram fatores de risco independentes para sensibilização ao látex

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of activities in the oil and gas sector has been promoting the search for materials more adequate to oilwell cementing operation. In the state of Rio Grande do Norte, the cement sheath integrity tend to fail during steam injection operation which is necessary to increase oil recovery in reservoir with heavy oil. Geopolymer is a material that can be used as alternative cement. It has been used in manufacturing of fireproof compounds, construction of structures and for controlling of toxic or radioactive waste. Latex is widely used in Portland cement slurries and its characteristic is the increase of compressive strength of cement slurries. Sodium Tetraborate is used in dental cement as a retarder. The addition of this additive aim to improve the geopolymeric slurries properties for oilwell cementing operation. The slurries studied are constituted of metakaolinite, potassium silicate, potassium hydroxide, non-ionic latex and sodium tetraborate. The properties evaluated were: viscosity, compressive strength, thickening time, density, fluid loss control, at ambient temperature (27 ºC) and at cement specification temperature. The tests were carried out in accordance to the practical recommendations of the norm API RP 10B. The slurries with sodium tetraborate did not change either their rheological properties or their mechanical properties or their density in relation the slurry with no additive. The increase of the concentration of sodium tetraborate increased the water loss at both temperatures studied. The best result obtained with the addition of sodium tetraborate was thickening time, which was tripled. The addition of latex in the slurries studied diminished their rheological properties and their density, however, at ambient temperature, it increased their compressive strength and it functioned as an accelerator. The increase of latex concentration increased the presence of water and then diminished the density of the slurries and increased the water loss. From the results obtained, it was concluded that sodium tetraborate and non-ionic latex are promising additives for geopolymer slurries to be used in oilwell cementing operation