152 resultados para Kuroshio
Resumo:
CREAMS, PICES and the exploration of the Japan/East Sea The state of the eastern North Pacific from September 97 to February 98 The state of the western North Pacific in the second half of 1997 The status of the Bering Sea in the second half of 1997 Hyung Tack Huh Report on GOOS Living Marine Resource Panel Meeting Global connections: A report of the GLOBEC International Open Science Meeting Update on U.S. GLOBEC research projects and coordination activities in the Northeast Pacific Institutional framework for oceanographic research in Japan The Kuroshio Edge Exchange Processes (KEEP) Project Report on NPAFC Workshop on Climate Change and Salmon Production A new ocean time series station in the western subarctic Pacific
Resumo:
EXECUTIVE SUMMARY 1. DECADAL-SCALE CLIMATE EVENTS 1.1 Introduction 1.2 Basin-scale Patterns 1.3 Long Time Series in the North Pacific 1.4 Decadal Climate Variability in Ecological Regions of the North Pacific 1.5 Mechanisms 1.6 References 2. COHERENT REGIONAL RESPONSES 2.1 Introduction 2.2 Central North Pacific (CNP) 2.3 California Current System (CCS) 2.4 Gulf of Alaska (GOA) 2.5 Bering Sea and Aleutian Islands 2.6 Western North Pacific (WNP) 2.7 Coherence in Regional Responses to the 1998 Regime Shift 2.8 Climate Indicators for Detecting Regime Shifts 2.9 References 3. IMPLICATIONS FOR THE MANAGEMENT OF MARINE RESOURCES 3.1 Introduction 3.2 Response Time of Biota to Regime Shifts 3.3 Response Time of Management to Regime Shifts 3.4 Provision of Stock Assessment Advice 3.5 Decision Rules 3.6 References 4. SUGGESTED LITERATURE 4.1 Climate Regimes 4.2 Impacts on Lower Trophic Levels 4.3 Impacts on Fish and Higher Trophic Levels 4.4 Impacts on Ecosystems and Possible Mechanisms 4.5 Regimes and Fisheries Management APPENDIX 1: RECENT ECOSYSTEM CHANGES IN THE CENTRAL NORTH PACIFIC A1.1 Introduction A1.2 Physical Oceanography A1.3 Lower Trophic Levels A1.4 Invertebrates A1.5 Fishes A1.6 References APPENDIX 2: RECENT ECOSYSTEM CHANGES IN THE CALIFORNIA CURRENT SYSTEM A2.1 Introduction A2.2 Physical Oceanography A2.3 Lower Trophic Levels A2.4 Invertebrates A2.5 Fishes A2.6 References APPENDIX 3: RECENT ECOSYSTEM CHANGES IN THE GULF OF ALASKA A3.1 Introduction A3.2 Physical Oceanography A3.3 Lower Trophic Levels A3.4 Invertebrates A3.5 Fishes A3.6 Higher Trophic Levels A3.7 Coherence in Gulf of Alaska Fish A3.8 Combined Standardized Indices of Recruitment and Survival Rate A3.9 References APPENDIX 4: RECENT ECOSYSTEM CHANGES IN THE BERING SEA AND ALEUTIAN ISLANDS A4.1 Introduction A4.2 Bering Sea Environmental Variables and Physical Oceanography A4.3 Bering Sea Lower Trophic Levels A4.4 Bering Sea Invertebrates A4.5 Bering Sea Fishes A4.6 Bering Sea Higher Trophic Levels A4.7 Coherence in Bering Sea Fish Responses A4.8 Combined Standardized Indices of Bering Fish Recruitment and Survival Rate A4.9 Aleutian Islands A4.10 References APPENDIX 5: RECENT ECOSYSTEM CHANGES IN THE WESTERN NORTH PACIFIC A5.1 Introduction A5.2 Sea of Okhotsk A5.3 Tsushima Current Region and Kuroshio/Oyashio Current Region A5.4 Bohai Sea, Yellow Sea, and East China Sea A5.5 References (168 page document)
Resumo:
I REPORT OF THE PICES WORKSHOP ON THE OKHOTSK SEA AND ADJACENT AREAS (pdf, 0.1 Mb) 1. Outline of the workshop 2. Summary reports from sessions 3. Recommendations of the workshop 4. Acknowledgments II SCIENTIFIC PAPERS SUBMITTED FROM SESSIONS 1. Physical Oceanography Sessions (pdf, 4 Mb) A. Circulation and water mass structure of the Okhotsk Sea and Northwestern Pacific Valentina D. Budaeva & Vyacheslav G. Makarov Seasonal variability of the pycnocline in La Perouse Strait and Aniva Gulf Valentina D. Budaeva & Vyacheslav G. Makarov Modeling of the typical water circulations in the La Perouse Strait and Aniva Gulf region Nina A. Dashko, Sergey M. Varlamov, Young-Ho Han & Young-Seup Kim Anticyclogenesis over the Okhotsk Sea and its influence on weather Boris S. Dyakov, Alexander A. Nikitin & Vadim P. Pavlychev Research of water structure and dynamics in the Okhotsk Sea and adjacent Pacific Howard J. Freeland, Alexander S. Bychkov, C.S. Wong, Frank A. Whitney & Gennady I. Yurasov The Ohkotsk Sea component of Pacific Intermediate Water Emil E. Herbeck, Anatoly I. Alexanin, Igor A. Gontcharenko, Igor I. Gorin, Yury V. Naumkin & Yury G. Proshjants Some experience of the satellite environmental support of marine expeditions at the Far East Seas Alexander A. Karnaukhov The tidal influence on the Sakhalin shelf hydrology Yasuhiro Kawasaki On the formation process of the subsurface mixed water around the Central Kuril Islands Lloyd D. Keigwin Northwest Pacific paleohydrography Talgat R. Kilmatov Physical mechanisms for the North Pacific Intermediate Water formation Vladimir A. Luchin Water masses in the Okhotsk Sea Andrey V. Martynov, Elena N. Golubeva & Victor I. Kuzin Numerical experiments with finite element model of the Okhotsk Sea circulation Nikolay A. Maximenko, Anatoly I. Kharlamov & Raissa I. Gouskina Structure of Intermediate Water layer in the Northwest Pacific Nikolay A. Maximenko & Andrey Yu. Shcherbina Fine-structure of the North Pacific Intermediate Water layer Renat D. Medjitov & Boris I. Reznikov An experimental study of water transport through the Straits of Okhotsk Sea by electromagnetic method Valentina V. Moroz Oceanological zoning of the Kuril Islands area in the spring-summer period Yutaka Nagata Note on the salinity balance in the Okhotsk Sea Alexander D. Nelezin Variability of the Kuroshio Front in 1965-1991 Vladimir I. Ponomarev, Evgeny P. Varlaty & Mikhail Yu. Cheranyev An experimental study of currents in the near-Kuril region of the Pacific Ocean and in the Okhotsk Sea Stephen C. Riser, Gennady I. Yurasov & Mark J. Warner Hydrographic and tracer measurements of the water mass structure and transport in the Okhotsk Sea in early spring Konstantin A. Rogachev & Andrey V. Verkhunov Circulation and water mass structure in the southern Okhotsk Sea, as observed in summer, 1994 Lynne D. Talley North Pacific Intermediate Water formation and the role of the Okhotsk Sea Anatoly S. Vasiliev & Fedor F. Khrapchenkov Seasonal variability of integral water circulation in the Okhotsk Sea B. Sea ice and its relation to circulation and climate V.P. Gavrilo, G.A. Lebedev & A.P. Polyakov Acoustic methods in sea ice dynamics studies Nina M. Pestereva & Larisa A. Starodubtseva The role of the Far-East atmospheric circulation in the formation of the ice cover in the Okhotsk Sea Yoshihiko Sekine Anomalous Oyashio intrusion and its teleconnection with Subarctic North Pacific circulation, sea ice of the Okhotsk Sea and air temperature of the northern Asian continent C. Waves and tides Vladimir A. Luchin Characteristics of the tidal motions in the Kuril Straits George V. Shevtchenko On seasonal variability of tidal constants in the northwestern part of the Okhotsk Sea D. Physical oceanography of the Japan Sea/East Sea Mikhail A. Danchenkov, Kuh Kim, Igor A. Goncharenko & Young-Gyu Kim A “chimney” of cold salt waters near Vladivostok Christopher N.K. Mooers & Hee Sook Kang Preliminary results from a numerical circulation model of the Japan Sea Lev P. Yakunin Influence of ice production on the deep water formation in the Japan Sea 2. Fisheries and Biology Sessions (pdf, 2.8 Mb) A. Communities of the Okhotsk Sea and adjacent waters: composition, structure and dynamics Lubov A. Balkonskaya Exogenous succession of the southwestern Sakhalin algal communities Tatyana A. Belan, Yelena V. Oleynik, Alexander V. Tkalin & Tat’yana S. Lishavskaya Characteristics of pelagic and benthic communities on the North Sakhalin Island shelf Lev N. Bocharov & Vladimir K. Ozyorin Fishery and oceanographic database of Okhotsk Sea Victor V. Lapko Interannual dynamics of the epipelagic ichthyocen structure in the Okhotsk Sea Valentina I. Lapshina Quantitative seasonal and year-to-year changes of phytoplankton in the Okhotsk Sea and off Kuril area of the Pacific Lyudmila N. Luchsheva Biological productivity in anomalous mercury conditions (northern part of Okhotsk Sea) Inna A. Nemirovskaya Origin of hydrocarbons in the ecosystems of coastal region of the Okhotsk Sea Tatyana A. Shatilina Elements of the Pacific South Kuril area ecosystem Vyacheslav P. Shuntov & Yelena P. Dulepova Biota of the Okhotsk Sea: Structure of communities, the interannual dynamics and current status B. Abundance, distribution, dynamics of the common fishes of the Okhotsk Sea Yuri P. Diakov Influence of some abiotic factors on spatial population dynamics of the West Kamchatka flounders (Pleuronectidae) Gordon A. McFarlane, Richard J. Beamish & Larisa M. Zverkova An examination of age estimates of walleye pollock (Theragra chalcogramma) from the Sea of Okhotsk using the burnt otolith method and implications for stock assessment and management Larisa P. Nikolenko Migration of Greenland turbot (Reinhardtius hippoglossoides) in the Okhotsk Sea Galina M. Pushnikova Fisheries impact on the Sakhalin-Hokkaido herring population Vidar G. Wespestad Is pollock overfished? C. Salmon of the Okhotsk Sea: biology, abundance and stock identification Vladimir A. Belyaev, Alexander Yu. Zhigalin Epipelagic Far Eastern sardine of the Okhotsk Sea Yuri E. Bregman, Victor V. Pushnikov, Lyudmila G. Sedova & Vladimir Ph. Ivanov A preliminary report on stock status and productive capacity of horsehair crab Erimacrus isenbeckii (Brandt) in the South Kuril Strait Natalia T. Dolganova Mezoplankton distribution in the West Japan Sea Vladimir V. Efremov, Richard L. Wilmot, Christine M. Kondzela, Natalia V. Varnavskaya, Sharon L. Hawkins & Maria E. Malinina Application of pink and chum salmon genetic baseline to fishery management Vyacheslav N. Ivankov & Valentina V. Andreyeva Strategy for culture, breeding and numerous dynamics of Sakhalin salmon populations Alla M. Kovalevskaya, Natalia I. Savelyeva & Dmitry M. Polyakov Primary production in Sakhalin shelf waters Tatyana N. Krupnova Some reasons for resource reduction of Laminaria japonica (Primorye region) Lyudmila N. Luchsheva & Anatoliy I. Botsul Mercury in bottom sediments of the northeastern Okhotsk Sea Pavel A. Luk’yanov, Natalia I. Belogortseva, Alexander A. Bulgakov, Alexander A. Kurika & Olga D. Novikova Lectins and glycosidases from marine macro and micro-organisms of Japan and Okhotsk Seas Boris A. Malyarchuk, Olga A. Radchenko, Miroslava V. Derenko, Andrey G. Lapinski & Leonid L. Solovenchuk PCR-fingerprinting of mitochondrial genome of chum salmon, Oncorhynchus keta Alexander A. Mikheev Chaos and relaxation in dynamics of the pink salmon (Oncorhynchus gorbuscha) returns for two regions Yuri A. Mitrofanov & Larisa N. Lesnikova Fish-culture of Pacific Salmons increases the number of heredity defects Larisa P. Nikolenko Abundance of young halibut along the West Kamchatka shelf in 1982-1992 Sergey A. Nizyaev Living conditions of golden king crab Lithodes aequispina in the Okhotsk Sea and near the Kuril Islands Ludmila A. Pozdnyakova & Alla V. Silina Settlements of Japanese scallop in Reid Pallada Bay (Sea of Japan) Galina M. Pushnikova Features of the Southwest Okhotsk Sea herring Vladimir I. Radchenko & Igor I. Glebov Present state of the Okhotsk herring stock and fisheries outlook Alla V. Silina & Ida I. Ovsyannikova Distribution of the barnacle Balanus rostratus eurostratus near the coasts of Primorye (Sea of Japan) Galina I. Victorovskaya Dependence of urchin Strongylocentrotus intermedius reproduction on water temperature Anatoly F. Volkov, Alexander Y. Efimkin & Valery I. Chuchukalo Feeding habits of Pacific salmon in the Sea of Okhotsk and in the Pacific waters of Kuril Islands in summer 1993 Larisa M. Zverkova & Georgy A. Oktyabrsky Okhotsk Sea walleye pollock stock status Tatyana N. Zvyagintseva, Elena V. Sundukova, Natalia M. Shevchenko & Ludmila A. Elyakova Water soluble polysaccharides of some Far-Eastern seaweeds 3. Biodiversity Program (pdf, 0.2 Mb) A. Biodiversity of island ecosystems and seasides of the North Pacific Larissa A. Gayko Productivity of Japanese scallop Patinopecten yessoensis (IAY) culture in Posieta Bay (Sea of Japan) III APPENDICES 1. List of acronyms 2. List of participants (Document pdf contains 431 pages)
Resumo:
Key Messages [pdf, 2.5 Mb] Climate Information Gaps Ocean Productivity Information gaps Living Marine Resources Information gaps Climate [pdf, 1.8 Mb] Productivity [pdf, 5.2 Mb] Nutrients Phytoplankton Zooplankton Living Resources [pdf, 10 Mb] Subarctic coastal systems Central oceanic gyres Temperate coastal and oceanic systems Marine mammals The Human Population [pdf, 5 Mb] Contaminants and Habitat Modifications Aquaculture Knowledge Gaps Glossary Ocean and Climate Changes [pdf, 4.1Mb] Highlights Introduction Atmospheric Indices Change in 1998/99 Comparison of Atmospheric Indices Authorship Yellow Sea / East China Sea [pdf, 2.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Benthos Fish and invertebrates Marine birds and mammals Issues Critical factors causing change Authorship Japan/East Sea [pdf, 3.3 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical factors causing change Issues Authorship Okhotsk Sea [pdf, 1.7 Mb] Background Status and Trends Climate Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Critical factors causing change Authorship Oyashio / Kuroshio [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Western Subarctic Gyre [pdf, 4.5 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Bering Sea [pdf, 2.2 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of Alaska [pdf, 2.6 Mb] Highlights Background Status and trends Hydrography Chemistry Plankton Fish and Invertebrates Marine birds and mammals Critical factors causing change Issues Authorship California Current [pdf, 2.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Gulf of California [pdf, 1.7 Mb] Highlights Background Status and Trends Hydrography Chemistry Plankton Fisheries Marine Birds and Mammals Critical Factors Causing Change Issues Authorship Transition Zone [pdf, 2.5 Mb] Background Status and Trends Hydrography Chemistry Plankton Fish and Invertebrates Marine Birds and Mammals Issues Authorship Tuna [pdf, 1.5 Mb] Highlights Background Pacific bluefin tuna Albacore tuna Status and trends Ecosystem model and climate forcing Authorship Pacific halibut [pdf, 1.1 Mb] Background The Fishery Climate Influences Authorship Pacific salmon [Updated, pdf, 0.4 Mb] Background Status and Trends Washington, Oregon, and California British Columbia Southeast Alaska Central Alaska Western Alaska Russia Japan Authorship References [pdf, 0.5 Mb]
Resumo:
东海陆架是世界上最宽阔的陆架之一,面积达770 000 km2左右。在末次冰盛期(LGM),东海海平面下降120~130 m左右,绝大部分陆架暴露出海面。而冲绳海槽是第四纪以来一直保持海洋环境的东海深海区。本文以冲绳海槽北部PC-1岩芯为材料,通过分析该孔的孢粉,加上详细的AMS 14C测年,恢复了周边地区24 cal.kaBP以来的古植被,并推测古环境和古气候变化,重点讨论了LGM时期出露大陆架上发育的植被。 PC-1孔(31°27.5′N,128°24.8′E)位于黑潮支流对马暖流东侧,水深590 m,柱长812 cm。孢粉分析按间隔8 cm取样,个别为4~6 cm,共分析了103个孢粉样品。利用9个AMS 14C数据建立年龄标尺,用Calib5.1.0软件进行年龄校正。通过相邻样品深度的线性内插获得每个样品的年龄,采用外延法得到顶部和底部的校正年龄分别为351cal aBP、24 280 cal aBP,孢粉样品的时间分辨率平均为230 a。 根据孢粉百分比和沉积率的变化,可划分出四个带:Ⅰ带(812~715 cm,24.2~21.1 cal. kaBP)、Ⅱ带(715~451 cm,21.1~15.2 cal. kaBP)、Ⅲ带(451~251 cm,15.2~10.8 cal. kaBP)、Ⅳ带(251~0 cm,10.8~0.3 cal. kaBP),分别对应MIS 3末期、末次冰盛期、冰消期和全新世。末次冰盛期草本植物花粉占优势,孢粉沉积率较高,此时草本花粉主要来源于出露的大陆架,其上发育了以蒿属为主的草地植被,气候比较寒冷干燥;冰消期海平面开始回升,松属花粉含量升高,草本植物花粉含量下降;全新世以木本植物花粉占绝对优势,栗属-栲属花粉迅速增加,蕨类孢子含量升高,草本植物花粉含量锐减,孢粉沉积率降低,由于海平面回升,大陆架被淹没,此时孢粉主要来源于日本岛,九州地区生长了以栲属、栎属为主的常绿阔叶与落叶阔叶林,气候温暖湿润。 叶枝杉属花粉在整个岩芯中零星出现。叶枝杉属植物分布于菲律宾吕宋北部至塔斯马尼亚和新西兰气候潮湿的山地林中,该属花粉在岩芯中的出现,可能暗示了黑潮的影响或者是较强的夏季风。 草本植物与松属花粉百分比变化很好的反映了海平面的升降,松属花粉含量较高指示海平面较高。对岩芯中主要类型的花粉百分比进行了频谱分析,显示存在千年尺度的准周期变化,有明显的6.8,3.8,2.2,1.6 ka的周期。 孢粉样品中的炭屑统计表明,末次冰消期炭屑含量最高,可能因为末次冰消期降雨量增加,炭屑可被降水带到沉积地点沉积下来;全新世的炭屑浓度较高,尤其在晚全新世,出现了一个峰值,究其原因可能与气候变化和人类活动有关。
Resumo:
On the basis of observation data of water temperature and salinity the mean seasonal geostrophic circulation in open region of the South China Sea (SCS) was computed by the dynamic method relative to the 800 decibar reference surface. The results of computation let go to following notices: In both main monsoons (winter and summer) there are two main geostrophic eddies: the anticlockwise eddy in the northern and northwestern part, and the clockwise eddy in the southern part of the SCS with corresponding divergent and convergent zones. The main frontal zones go along the middle latitudes of the sea from the southern continental shelf of Vietnam to the area west of Luzon Island. The strength and stability of the current in winter are higher than in summer. The Kuroshio has an enough strong branch intruding into the SCS through Bashi Strait in winter creating in the sea the water structure similar to that of the Northwest Pacific subtropical and tropical regions. In summer the Kuroshio water can intrude directly only into the area southwest of Taiwan.
Resumo:
Oceanographic conditions and transport processes are often critical factors that affect the early growth, survival and recruitment of marine fishes. Sagittal otoliths were analysed to determine age and early growth for 381 jack mackerel (Trachurus japonicus) juveniles from Sagami Bay on the Pacific coast of Japan. Two separate hatching periods ( December and February-March) were identified. They originated from the spawning grounds in the East China Sea. Early growth and developmental rates of December-hatching fish were lower than those for February-March-hatching fish. It is likely that these differences were determined in the Kuroshio Current during transport from the spawning grounds to Sagami Bay, and the lower December water temperatures in the bay. Origin and hatch dates of juveniles in Sagami Bay were in contrast to previous research on Fukawa Bay, where April-or-later-hatching fish from spawning grounds in the coastal waters of southern Japan constituted about half of the juvenile population. Management of these two jack mackerel stocks needs to consider these differences in hatch date composition and spawning origins, as these differences could affect early growth and subsequent mortality.
Resumo:
A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone I (812-715 cm, 24.2-21.1 cal. kaBP), zone II (715-451 cm, 21.1-15.2 cal. kaBP), zone III (451-251 cm, 15.2-10.8 cal. kaBP), zone IV (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the exposed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.85 2.2, 1.6 ka.
Resumo:
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus, the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BP, caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.
Resumo:
As a high-sedimentation rate depocenter along the path of the Kuroshio Current, the southwesternmost part of the Okinawa Trough is a key area to understand the Kuroshio history and sediments transportation. A 34.17-m-long sediment core was obtained by the advanced piston corer of Marco Polo/IMAGES XII MARION DUFRESNE during the May 2005 from the Southern Okinawa Trough at site MD05-2908. The recovered sediments were analyzed by AMS C-14 dating, coarse size fraction (> 63 mu m) extraction and moisture content determination in order to study its sedimentation flux and provenance. The depth-age relationship of core MD05-2908 was well constrained by 17 C-14 dating points. The sediments span across the mid-Holocene (6.8 ka B.P.) and have remarkablely high sedimentation rates between 1.8 and 21-2 m/ka, which is well consistent with the modern observations from sediment traps. We identified five 70-200 a periods of abnormally rapid sedimentation events at 6790-6600 a B.P., 5690-5600 a B.P., 4820-4720 a B.P., 1090-880 a B.P., and 260-190 a B.P., during which the highest sedimentation rate is up to 21-2 m/ka. In general, the lithology of the sediments were dominated by silt and clay, associated with less than 5% coarse size fraction (a parts per thousand << 63 mu m). As the most significant sediment source, the Lanyang River in northeastern Taiwan annually deliver about 10Mt materials to the coastal and offshore region of northeast Taiwan, a portion of which could be carried northward by currents toward the study area. Therefore, we concluded that the 5 abnormally rapid sedimentation events may be related to intensified rainfall in Taiwan and thus increased materials to our study area at that time. However, a few extreme-rapid sedimentation events cannot be explained by normal river runoff alone. The large earthquakes or typhoons induced hyperpycnal discharge of fluvial sediment to the ocean may also act as a potential source supply to the Okinawa Trough.
Resumo:
The species and characteristics of Radiolaria in the surface sediments were systematcally investigated in the sea east of Taiwan Island. One hundred and seventy-eight species of Radiolaria (including 21 unidentified species) have been identified in the surface sediments, and they belong to 2 orders, 34 families and 101 genera. Among them there are 19 families, 70 genera, 134 species of Spumellaria and 15 families, 31 genera, 44 species of Nassellaria. Of the 178 species of Radiolaria, the individual number of Spumellaria amounts to 88.1% of the total individual number, and that of Nassellaria amounts to 11.9% of the total individual number. It is shown that most of the dominant species belong to the tropical and subtropical dominant species and are brought into the area mainly by the Kuroshio, and some affecting factors including the submarine topography, submarine sediments, upwelling current east of Taiwan Island and carbonate dissolution play a secondary role in forming the Radiolaria distributions.
Resumo:
Radiolarian abundance and species composition have been determined in 72 surface: sediment samples from the northeastern East China Sea. The results are compared with chemical and physical properties of the overlying water masses, and with sediment conditions. In the study area, radiolarian abundance and species number increase markedly from northwest to southeast, and their distributions can be divided into three provinces: the low-density zone corresponding to the shelf, the middle-density zone corresponding to the western slope of the Okinawa Trough and the high-density zone corresponding to the central part of the Okinawa Trough. The distribution of radiolarians correlates well with modem sea surface temperature and sea surface salinity, but shows a negative relation with nutrients and primary productivity of the overlying water. This distribution pattern is also strongly affected by the sediment type and terrigenous material input. Also, the Kuroshio Current has an important effect on controlling the distribution and species composition of radiolarian fauna in this area. Based on three Q-mode factors (accounting for 90.2% of the variance), three radiolarian assemblages have been distinguished, and their distributions are clearly correlated with oceanographic current patterns in the region. The mixed water assemblage dominated by Tetrapyle circularis, Tetrapyle quadriloba and Ommatartus tetrathalamus tetrathalamus is restricted to the area of the Mixed Water, but mainly influenced by the Shelf Water. The Kuroshio Water assemblage, which is dominated by Lithelius minor, Dictyocoryne profunda, Stylodictya multispina, Acrosphaera spinosa, Dictyocoryne truncatum, Spongaster tetrars, Stylodictya arachnia and Ommatartus tetrathalamus tetrathalamus, is basically controlled by the Kuroshio Surface Water. And the transition assemblage dominated by Tetrapyle quadriloba and Monozonium pachystylum is associated with the Tsushima Warm Current Water. The boundaries among these assemblages approximately coincide with the oceanographic front. And the changes in the distribution of these assemblages could be,regarded as-not only modifications of the water masses, but also indicators of the possible movements of the oceanic front. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Two gravity piston cores (Cores 155 and 18) involved in this study were collected from the middle Okinawa Trough. Stratigraphy of the two cores was divided and classified based on the features of planktonic foraminifera oxygen isotope changes together with depositional sequence, millennium-scale climatic event comparison, carbonate cycles and AMS(14)C dating. Some paleoclimatic information contained in sediments of these cores was extracted to discuss the paleoclimatic change rules and the short-time scale events presented in interglacial period. Analysis on the variation of oxygen isotope values in stage two shows that the middle part of the Okinawa Trough may have been affected by fresh water from the Yellow River and the Yangtze River during the Last Glacial Maximum (LGM). The oxygen isotope value oscillating ranges of the cores have verified that the marginal sea has an amplifying effect on climate changes. The delta(13)C of benthic foraminifera Uvigerina was lighter in the glacial period than that in the interglacial period, which indicates that the Paleo-Kuroshio's main stream moved eastward and its influence area decreased. According to the temperature difference during the "YD" period existing in Core 180 and other data, we can reach the conclusion that the climatic changes in the middle Okinawa Trough area were controlled by global climatic changes, but some regional factors had also considerable influence on the climate changes. Some results in this paper support Fairbanks's point that the "YD" event was a brief stagnation of sea level rising during the global warming up procession. Moreover, the falling of sea level in the glacial period weakened the exchange between the bottom water of the Okinawa Trough and the deep water of the northwestern Pacific Ocean and resulted in low oxygen state of bottom water in this area. These procedures are the reasons for carbonate cycle in the Okinawa Trough area being consistent with the "Atlantic type" carbonate cycle.
Resumo:
Benthic foraminiferal analysis of 29 samples in surface sediments from the southern Okinawa Trough is carried out. The results indicate that benthic foraminiferal abundance decreases rapidly with increasing water depth. Percentage frequencies of agglutinated foraminifera further confirm the modem shallow carbonate lysocline in the southern Okinawa Trough. From continental shelf edge to the bottom of Okinawa Trough, benthic foraminiferal fauna in the surface sediments can be divided into 5 assemblages: (1) Continental shelf break assemblage, dominated by Cibicides pseudoungerianus, corresponds to subsurface water mass of the Kuroshio Current; (2) upper continental slope assemblage, dominated by Cassidulina carinata, Globocassidulina subglobosa, corresponds to intermediate water mass of the Kuroshio Current; (3) intermediate continental slope assemblage, dominated by Uvigerina hispida, corresponds to the Okinawa Trough deep water mass above the carbonate lysocline; (4), lower continental slope - trough bottom assemblage, dominated by Pullenia bulloides, Epistominella exigua and Cibicidoides hyalinus, corresponds to deep water mass of the Okinawa Trough; and (5) trough bottom agglutinated assemblage, dominated by Rhabdammina spp., Bathysiphon flavidus, corresponds to I strongly dissolved environment of the trough bottom. The benthic foraminiferal fauna in the southern Okinawa Trough are controlled jointly by water masses and food supply. Water temperature, oxygen concentration and carbonate dissolution of the water masses are important controlling factors especially for the continental shelf break and trough bottom assemblages. The food supply also plays an important role in these benthic foraminiferal assemblages along the western slope. of the Okinawa Trough. Both the abundance and the 5 assemblages of benthic foraminifera correspond well to the organic matter supply along the continental slope and a lateral transport of TSM (total suspended matter) and POC (particulate organic carbon) from the shelf break to the deep water is also an important food supply for benthic fauna in this region.
Resumo:
Indexes of sediment grain size, sedimentation rates, geochemical composition, heavy minerals, benthic foraminiferal fauna, indicator species of the Kuroshio Current, paleo-SST and carbonate dissolution of core E017 conformably suggest a great marine environmental change occurring at about 10.1-9.2 cal. kaBP in the southern Okinawa Trough, which may correspond to the strengthening of the Kuroshio Warm Current and re-entering the Okinawa Trough through the sea area off northeast Taiwan. The invasion of Kuroshio current has experienced a process of gradual strengthening and then weakening, and its intensity became more fluctuation during the last 5000 years. Compared to the transition of sediment grain size, geochemical composition and heavy minerals, the foraminiferal faunas show a 900-year lag, which may indicate that the invasion of Kuroshio Current and the consequent sea surface and deep-water environmental changes is a gradual process, and fauna has an obvious lag compared to environment altering. The carbonate dissolution of the Okinawa Trough has had an apparent strengthening since 9.2 cal. kaBP, and reached a maximum in the late 3000 years, which may be caused by the deep-water environmental changes due to the invasion of Kuroshio Current.