360 resultados para Kriging disjuntiu


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large monitoring networks are becoming increasingly common and can generate large datasets from thousands to millions of observations in size, often with high temporal resolution. Processing large datasets using traditional geostatistical methods is prohibitively slow and in real world applications different types of sensor can be found across a monitoring network. Heterogeneities in the error characteristics of different sensors, both in terms of distribution and magnitude, presents problems for generating coherent maps. An assumption in traditional geostatistics is that observations are made directly of the underlying process being studied and that the observations are contaminated with Gaussian errors. Under this assumption, sub–optimal predictions will be obtained if the error characteristics of the sensor are effectively non–Gaussian. One method, model based geostatistics, assumes that a Gaussian process prior is imposed over the (latent) process being studied and that the sensor model forms part of the likelihood term. One problem with this type of approach is that the corresponding posterior distribution will be non–Gaussian and computationally demanding as Monte Carlo methods have to be used. An extension of a sequential, approximate Bayesian inference method enables observations with arbitrary likelihoods to be treated, in a projected process kriging framework which is less computationally intensive. The approach is illustrated using a simulated dataset with a range of sensor models and error characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this work was to estimate the number of soil subsamples considering the classical statistics and geostatistics and determine the spatial variability of soil fertility attributes of an Ultisol, with clay texture, in an area of regenerating natural vegetation in Alegre - ES. Soil samples were collected in a depth of 0.0-0.2 m, at the crossing points of a regular grid, comprising a total of 64 points located at 10 m-intervals. The area presented low fertility soil. Considering a variation of 5% around the mean in the classic statistics, it is necessary a larger number of samples in relation to geostatistics. All the chemical attributes showed moderate to high spatial dependence, except for the effective cation exchange capacity (CECe), which showed pure nugget effect. The spherical semivariogram model gave the best fit to the data. Isoline maps allowed visualizing the differentiated spatial distribution of the contents of soil chemical attributes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relief influences soil texture variability, since it contributes to the time of exposition of the materials to weathering factors. Our work was carried out in the city of Gavião Peixoto (SP), with the objective of characterizing the spatial variability of texture of a dystrophic Red Latosol cultivated with citrus. The hillside was divided into three segments: top, stocking lean and inferior lean. Soil samples were collected in a grid with regular intervals of 50 m, at the depths of 0.0-0.2 m and 0.6-0.8 m, comprising a total of 332 points in an area of 83.5 ha. The data were submitted to descriptive and geostatistics analyses (semivariogram modeling and kriging maps). The spatial behavior of the texture of oxisols is directly related to the relief forms in this study, which controls the direction of surface and subsurface water flows. The concept of homogeneity of clay distribution in the Oxisol profile is a piece of information that can be adjusted by knowing the spatial pattern of this distribution in different relief forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modelagem da estrutura de dependência espacial pela abordagem da geoestatística é fundamental para a definição de parâmetros que definem esta estrutura, e que são utilizados na interpolação de valores em locais não amostrados pela técnica de krigagem. Entretanto, a estimação de parâmetros pode ser muito afetada pela presença de observações atípicas nos dados amostrados. O desenvolvimento deste trabalho teve por objetivo utilizar técnicas de diagnóstico de influência local em modelos espaciais lineares gaussianos, utilizados em geoestatística, para avaliar a sensibilidade dos estimadores de máxima verossimilhança e máxima verossimilhança restrita na presença de dados discrepantes. Estudos com dados experimentais mostraram que tanto a presença de valores atípicos como de valores considerados influentes, pela análise de diagnóstico, pode exercer forte influência nos mapas temáticos, alterando, assim, a estrutura de dependência espacial. As aplicações de técnicas de diagnóstico de influência local devem fazer parte de toda análise geoestatística a fim de garantir que as informações contidas nos mapas temáticos tenham maior qualidade e possam ser utilizadas com maior segurança pelo agricultor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O conhecimento da variabilidade espacial dos atributos de um solo sob diferentes coberturas auxilia o estudo das alterações ocorridas em razão do manejo. O objetivo deste trabalho foi determinar, com uso da estatística clássica e geoestatística, a variabilidade espacial das frações texturais de um solo cultivado com pastagem e vegetação nativa. Amostras de solo foram coletadas na profundidade de 0-0,20m, nos pontos de cruzamento de uma malha, com intervalos regulares de 10m, totalizando 64 pontos em cada área. Na área de pastagem, as frações areia grossa e total apresentaram valores médios maiores em relação à vegetação nativa e correlações negativas com as altitudes dos pontos amostrais nas duas áreas. Todas as frações texturais apresentaram dependência espacial de moderada a alta nas duas áreas e com o patamar definido, com exceção da areia fina e do silte na pastagem. Grande parte dessa variabilidade ocorre em função da erosão hídrica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite modern weed control practices, weeds continue to be a threat to agricultural production. Considering the variability of weeds, a classification methodology for the risk of infestation in agricultural zones using fuzzy logic is proposed. The inputs for the classification are attributes extracted from estimated maps for weed seed production and weed coverage using kriging and map analysis and from the percentage of surface infested by grass weeds, in order to account for the presence of weed species with a high rate of development and proliferation. The output for the classification predicts the risk of infestation of regions of the field for the next crop. The risk classification methodology described in this paper integrates analysis techniques which may help to reduce costs and improve weed control practices. Results for the risk classification of the infestation in a maize crop field are presented. To illustrate the effectiveness of the proposed system, the risk of infestation over the entire field is checked against the yield loss map estimated by kriging and also with the average yield loss estimated from a hyperbolic model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work is to perform a multiobjective optimization in a 4:2 switched reluctance motor aiming both to maximize the mitigation of the torque ripple and to minimize the degradations of the starting and mean torques. To accomplish this task the Pareto Archived Evolution Strategy was implemented jointly with the Kriging Method, which acts as a surrogate function. The technique was applied on the optimization of some rotor geometrical parameters with the aid of finite element simulations to evaluate the approximation points for the Kriging model. The numerical results were compared to those from tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil CO(2) emissions are highly variable, both spatially and across time, with significant changes even during a one-day period. The objective of this study was to compare predictions of the diurnal soil CO(2) emissions in an agricultural field when estimated by ordinary kriging and sequential Gaussian simulation. The dataset consisted of 64 measurements taken in the morning and in the afternoon on bare soil in southern Brazil. The mean soil CO(2) emissions were significantly different between the morning (4.54 mu mol m(-2) s(-1)) and afternoon (6.24 mu mol m(-2) s(-1)) measurements. However, the spatial variability structures were similar, as the models were spherical and had close range values of 40.1 and 40.0 m for the morning and afternoon semivariograms. In both periods, the sequential Gaussian simulation maps were more efficient for the estimations of emission than ordinary kriging. We believe that sequential Gaussian simulation can improve estimations of soil CO(2) emissions in the field, as this property is usually highly non-Gaussian distributed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orebody modelling, support effects and the estimation of recoverable reserves are key parts of open pit optimization studies. A case study is presented on the estimation of recoverable reserves using an implementation of indicator kriging where metal quantity is used to select cutoffs, and support corrections founded on a conditional simulation approach. Mining selectivity is explored in the subsequent optimization study to compare results from indicator kriging of grade estimates on a regular size blocks and indicator kriging estimates on small size blocks. The use of indicator kriging models adjusted for a given selectivity and the use of grade proportions in each block for the optimization study, provide a presentation of the expected ore recovery for a predefined level of selectivity. The case study shows that indicator kriging estimation with full accounting of block grade distributions generates substantially better results in the pit optimization study. In addition, the adverse effects of small blocks and over-smoothing on optimization results are illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combinação da agricultura de precisão e do Sistema Integrado de Recomendação Foliar (DRIS) possibilita monitorar espacialmente o balanço nutricional dos cafezais para fornecer recomendações de adubação mais equilibradas e mais ajustadas economicamente. O objetivo deste trabalho foi avaliar a variabilidade espacial do estado nutricional do cafeeiro conilon, utilizando o Índice de Balanço Nutricional (IBN) e sua relação com a produtividade. A produtividade das plantas em cada ponto amostral foi determinada e construiu-se o seu mapa considerando a variabilidade espacial; determinou-se o Índice de Equilíbrio Nutricional (IBN) das plantas em cada ponto amostral e construiu-se o seu mapa; e utilizou-se a análise de componentes principais (ACP) para estimar o IBN do cafeeiro por cokrigagem. Os dados do cafeeiro conilon foram coletados em fazenda experimental, no município de Cachoeiro de Itapemirim-ES. O IBN do cafeeiro e a sua produtividade foram analisados por meio de geoestatística, com base nos modelos e parâmetros dos semivariogramas, utilizando o método de interpolação krigagem ordinária para estimar valores para locais não amostrados. O índice de Balanço Nutricional da lavoura do cafeeiro conilon apresentou dependência espacial, porém não apresentou correlação linear e nem espacial com a produtividade. A lavoura em estudo se encontra em desequilíbrio nutricional, sendo que entre os macronutrientes, o Potássio foi o que apresentou maior desequilíbrio na área, entre os micronutrientes, o Zinco e o Ferro foram os que apresentaram menores concentrações nas folhas. A confecção dos mapas possibilitou a distinção de regiões com maior e menor desequilíbrio nutricional e produtividade, o que possibilita adotar o manejo de forma diferenciada e localizada. A análise multivariada baseada em componentes principais fornece componentes com alta correlação com as variáveis originais P, Ca, Zn , Cu, K e B. A cokrigagem utilizando as componentes principais permite estimar o IBN e a produtividade da área.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A compreensão das interacções entre os oceanos, a linha de costa, a qualidade do ar e as florestas só será possível através do registo e análise de informação geo-temporalmente referenciada. Mas a monitorização de grandes áreas apresenta o problema da cobertura espacial e temporal, e os custos nela envolvidos pela impossibilidade de disseminar a quantidade de estações de monitorização necessários à compreensão do fenómeno. É necessário então definir metodologias de colocação de sensores e recolha de informação de forma robusta, económica e temporalmente útil. Nesta dissertação apresentamos uma estratégia de monitorização ambiental, para meios hídricos, (ou de grande dimensão) que baseada em sistemas móveis e alguns princípios da geoestatística, fornece uma ferramenta de monitorização mais económica, sem prejuízo da qualidade de informação. Os modelos usados na geoestatística assentam na ideia de que medidas mais próximas tendem a serem mais parecidas do que valores observados em locais distantes e fornece métodos para quantificar esta correlação espacial e incorporá-la na estimação. Os resultados obtidos sustentam a convicção do uso de veículos móveis em redes de sensores e que contribuímos para responder à seguinte questão “Qual a técnica que nos permite com poucos sensores monitorizar grandes áreas?”. A solução passará por modelos de estimação de grandezas utilizados na geoestatística associados a sistemas móveis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geostatistics has been successfully used to analyze and characterize the spatial variability of environmental properties. Besides giving estimated values at unsampled locations, it provides a measure of the accuracy of the estimate, which is a significant advantage over traditional methods used to assess pollution. In this work universal block kriging is novelty used to model and map the spatial distribution of salinity measurements gathered by an Autonomous Underwater Vehicle in a sea outfall monitoring campaign, with the aim of distinguishing the effluent plume from the receiving waters, characterizing its spatial variability in the vicinity of the discharge and estimating dilution. The results demonstrate that geostatistical methodology can provide good estimates of the dispersion of effluents that are very valuable in assessing the environmental impact and managing sea outfalls. Moreover, since accurate measurements of the plume’s dilution are rare, these studies might be very helpful in the future to validate dispersion models.