994 resultados para Kotzebue Sound region
Resumo:
ESSD: the new “buzz word” for environmentally sound and sustainable development. It has no greater sense of urgency and relevance than in the Asia-Pacific region.
Resumo:
Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).
Resumo:
Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).
Resumo:
Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.
Resumo:
Saliency maps determine the likelihood that we focus on interesting areas of scenes or images. These maps can be built using several low-level image features, one of which having a particular relevance: colour. In this paper we present a new computational model, based only on colour features, which provides a sound basis for saliency maps for static images and video, plus region segregation and cues for local gist vision.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
El presente trabajo se basa en el análisis de las prácticas sonoras y, a partir de ahí, de una apuesta por un nuevo campo de estudios, el de los Estudios Sonoros; cuyo fin último es establecer una perspectiva epistemológica y política de las prácticas experimentales con sonido, en diálogo con proyectos provenientes de los Estudios Culturales, como son el proyecto modernidad/ colonialidad, las teorías poscoloniales y los estudios subalternos. Desde estas posiciones teóricas y políticas, estoy conciente de que el sonido, y sus posibilidades experimentales, articulan un régimen influyente en el mundo contemporáneo. Razón por la cual, sobre todo, esta es una reflexión desde las prácticas sonoras que surgen en dos ciudades andinas: Quito y Bogotá, como una expresión emergente para establecer encuentros Sur-Sur, que puedan generar diálogos epistemológicos sobre el sonido. En otras palabras, en este libro estoy proponiéndo a mis lectoras y lectores, una especie de “juego epistémico”: comprender el sonido como un lugar de conocimiento.Y el sonido es conocimiento precisamente porque el sonido nos permite vernos (y permite verme) como un sujeto históricamente ubicado. En el capítulo primero abordaré la pregunta de cómo se fue articulando el régimen discursivo del sonido como arte, dentro de diálogos y conflictos que se generaron en el contexto de la Guerra Fría que, para el caso de Latinoamérica, constituyó la transferencia de conocimientos articulados desde promesas como el desarrollismo y la modernización. También analizaré el cómo se configuraron, tanto en Quito como en Bogotá, las nuevas subjetividades “artísticas” frente al discurso de las vanguardias europeas del siglo XX y el experimentalismo estadounidense. Como verán mis lectoras y lectores, estos modelos, aparentemente originales e innovadores, fueron influidos por formas de saber y poder moduladas alrededor de la idea de la renovación de las artes a través del sonido, formulación que instaló el sonido como dispositivo/materia desde el cual, en detrimento de lo local, se articuló la fantasía de un universal deseado: las máquinas de sonido y de reproducibilidad técnica. En el segundo capítulo me centraré en algunas prácticas de experimentación sonora para indagar cuestiones como el estilo, procedimiento posmodernista ampliamente diseminado dentro de las instituciones artísticas y de éstas hacia la vida cotidiana. A partir de lo cual intentamos esclarecer el porqué de la confiscación y sometimiento de lo sonoro bajo el cuidadoso encierro del régimen discursivo del arte, que de manera eficiente lo absorbe como un “nuevo” medio para disciplinarlo y nombrarlo como proyecto sonoro, pieza sonora, instalación sonora, performance sonoro, acción sonora, objeto sonoro, paisaje sonoro, composición, loop. En otras palabras, cómo todo lo que genera el posmodernismo es apropiado por las universidades para crear la noción de “pastiche”, en donde todo cabe, bajo la indulgencia del “estilo”, procedimiento desde el cual se va instalando el régimen de verdad de un nuevo universal deseado: El Arte Sonoro. En este mismo capítulo, indagamos sobre las lógicas de producción de estas prácticas, para avanzar hacia las lógicas culturales donde lo sonoro se define y redefine por el posicionamiento y el lugar desde el que actúan los sujetos. Bajo estas consideraciones, queda planteada la propuesta, acuñada por esta investigación, la de un nuevo campo de estudio: Los Estudios Sonoros, propuesta que debe ser entendida como lo que algunos intelectuales latinoamericanos llaman epistemes emergentes11, precisamente porque esta investigación hace un esfuerzo por esclarecer las interdependencias existentes entre prácticas artísticas con sonido, el campo discursivo del arte y otras construcciones discursivas de la modernidad-colonialidad que establecen y regulan la formación del régimen sonoro. En el capítulo tercero analizaré cómo un “medio de creación” se vuelve hegemónico y cómo ciertos artistas que usan el sonido, bajo la pretensión de representar la marginalidad, marginalizan aún más a las personas que han sido históricamente subalternizadas. Seguido de este análisis, en el capítulo cuarto, indagamos sobre las tácticas que marcan nuevas formas de adhesión, de representación y de resistencia cultural, las mismas que son estrategias suplementarias frente, y en contra, de los discursos dominantes de las prácticas artísticas con sonido y las geopolíticas de conocimiento.
Resumo:
In this paper we derive novel approximations to trapped waves in a two-dimensional acoustic waveguide whose walls vary slowly along the guide, and at which either Dirichlet (sound-soft) or Neumann (sound-hard) conditions are imposed. The guide contains a single smoothly bulging region of arbitrary amplitude, but is otherwise straight, and the modes are trapped within this localised increase in width. Using a similar approach to that in Rienstra (2003), a WKBJ-type expansion yields an approximate expression for the modes which can be present, which display either propagating or evanescent behaviour; matched asymptotic expansions are then used to derive connection formulae which bridge the gap across the cut-off between propagating and evanescent solutions in a tapering waveguide. A uniform expansion is then determined, and it is shown that appropriate zeros of this expansion correspond to trapped mode wavenumbers; the trapped modes themselves are then approximated by the uniform expansion. Numerical results determined via a standard iterative method are then compared to results of the full linear problem calculated using a spectral method, and the two are shown to be in excellent agreement, even when $\epsilon$, the parameter characterising the slow variations of the guide’s walls, is relatively large.
Food of the Atlantic Croaker, Micropogonias undulatus, from Mississippi Sound and the Gulf of Mexico
Resumo:
The diet of the Atlantic croaker from Mississippi Sound has been examined for the first time. Over 83 taxa were encountered, or more than were reported from croaker in any other region. We also found 60 taxa, 36 of which overlapped with the above, in croaker from various offshore stations in the Gulf of Mexico. In Mississippi Sound the frequency of occurrcnce of items revealed primarily crustaceans followed by polychaetes, molluscs, fishes, and less common items, and, in the open Gulf, molluscs appeared slightly more often than in inshore croaker and than polychaetes in offshore fish. The diets were assessed according to length of fish, season, depth of water, and locality.
Resumo:
Examined digestive tracts of the red drum in Mississippi Sound contained mostly decapod crustaceans. Crustaceans accounted for 34 of 59 encountered taxa, more than reported from any other region. Nevertheless, the general diet for 104 fish with food contents out of the 107 examined is similar to that reported for red drum in several other studies from other areas. In addition to crustaceans, fishes followed by polychaetes occurred as the most important items (in 99, 43, and 15% of the drum with food, respectively). Blue crabs occurred in even more drum than the frequently encountered penaeid shrimps. Other commercial species were negligible in the diet. Sixteen large drum from Georgia beaches were also examined; unlike those from Mississippi, many of these contained echinoderms, but not polychaetes or penaeids. We suggest that the red drum’s migrations may be regulated by optimal abundance of specific types of dietary organisms.
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.
Resumo:
A sustainable water resources management depends on sound information about the impacts of climate change. This information is, however, not easily derived because natural runoff variability interferes with the climate change signal. This study presents a procedure that leads to robust estimates of magnitude and Time Of Emergence (TOE) of climate-induced hydrological change that also account for the natural variability contained in the time series. Firstly, natural variability of 189 mesoscale catchments in Switzerland is sampled for 10 ENSEMBLES scenarios for the control (1984–2005) and two scenario periods (near future: 2025–2046, far future: 2074–2095) applying a bootstrap procedure. Then, the sampling distributions of mean monthly runoff are tested for significant differences with the Wilcoxon-Mann–Whitney test and for effect size with Cliff’s delta d. Finally, the TOE of a climate change induced hydrological change is determined when at least eight out of the ten hydrological projections significantly differ from natural variability. The results show that the TOE occurs in the near future period except for high-elevated catchments in late summer. The significant hydrological projections in the near future correspond, however, to only minor runoff changes. In the far future, hydrological change is statistically significant and runoff changes are substantial. Temperature change is the most important factor determining hydrological change in this mountainous region. Therefore, hydrological change depends strongly on a catchment’s mean elevation. Considering that the hydrological changes are predicted to be robust in the near future highlights the importance of accounting for these changes in water resources planning.
Resumo:
Three sequential hurricanes, Dennis, Floyd, and Irene, affected coastal North Carolina in September and October 1999. These hurricanes inundated the region with up to 1 m of rainfall, causing 50- to 500-year flooding in the watershed of the Pamlico Sound, the largest lagoonal estuary in the United States and a key West Atlantic fisheries nursery. We investigated the ecosystem-level impacts on and responses of the Sound to the floodwater discharge. Floodwaters displaced three-fourths of the volume of the Sound, depressed salinity by a similar amount, and delivered at least half of the typical annual nitrogen load to this nitrogen-sensitive ecosystem. Organic carbon concentrations in floodwaters entering Pamlico Sound via a major tributary (the Neuse River Estuary) were at least 2-fold higher than concentrations under prefloodwater conditions. A cascading set of physical, chemical, and ecological impacts followed, including strong vertical stratification, bottom water hypoxia, a sustained increase in algal biomass, displacement of many marine organisms, and a rise in fish disease. Because of the Sound's long residence time (≈1 year), we hypothesize that the effects of the short-term nutrient enrichment could prove to be multiannual. A predicted increase in the frequency of hurricane activity over the next few decades may cause longer-term biogeochemical and trophic changes in this and other estuarine and coastal habitats.
Resumo:
Acknowledgements The authors are grateful to the following bodies that provided financial support for the project: (i) China Scholarship Council, (ii) National Natural Science Foundation of China (Grant no. U1334201) and (iii) UK Engineering and Physical Sciences Research Council (Grant no. EP/G069441/1).