52 resultados para Kluyveromyces Marxianus
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Cheese whey powder (CWP) is an attractive raw material for ethanol production since it is a dried and concentrated form of CW and contains lactose in addition to nitrogen, phosphate and other essential nutrients. In the present work, deproteinized CWP was utilized as fermentation medium for ethanol production by Kluyveromyces fragilis. The individual and combined effects of initial lactose concentration (50-150 kg m(-3)), temperature (25-35 degrees C) and inoculum concentration (1-3 kg m(-3)) were investigated through a 2(3) full-factorial central composite design, and the optimal conditions for maximizing the ethanol production were determined. According to the statistical analysis, in the studied range of values, only the initial lactose concentration had a significant effect on ethanol production, resulting in higher product formation as the initial substrate concentration was increased. Assays with initial lactose concentration varying from 150 to 250 kg m(-3) were thus performed and revealed that the use of 200 kg m(-3) initial lactose concentration, inoculum concentration of 1 kg m(-3) and temperature of 35 degrees C were the best conditions for maximizing the ethanol production from CWP solution. Under these conditions, 80.95 kg m(-3) of ethanol was obtained after 44 h of fermentation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A study of galacto-oligosaccharides (GOS) synthesis from lactose with beta-galactosidase from Kluyveromyces lactis (Maxilact(R) L2000) was carried out. The synthesis was performed using various initial lactose concentrations ranging from 220 to 400 mg/mL and enzyme concentrations ranging from 3 to 9 U/mL, and was investigated at 40degreesC and pH 7, in a stirred-tank reactor. In the experimental range examined, the results showed the amount of GOS formed depended on lactose concentration but not on enzyme concentration. Galactose was a competitive inhibitor, while glucose was a non-competitive inhibitor. In a further study, a laboratory-scale reactor system, fitted with a 10-kDa NMWCO composite regenerated cellulose membrane, was used in a continuous process. The reactor was operated in cross-flow mode. The effect of operating pressures on flux and productivity was investigated by applying different transmembrane pressures to the system. The continuous process showed better production performance compared to the batch synthesis with the same lactose and enzyme concentrations at 40degreesC, pH 7. Comparison of product structures from batch and continuous processes, analyzed by HPAEPAD and methylation analysis, showed similarities but differed from the structures found in a commercial GOS product (Vivinal(R)GOS). (C) 2004 Wiley Periodicals, Inc.
Resumo:
In this study, it was demonstrated that β-galactosidase can be deactivated and reactivated with EDTA and divalent metal ions. The enzyme was deactivated after 20 minutes in EDTA solution. Maximal deactivation at the lowest EDTA concentration (10-3 mol.L-1) occurred in the presence of Tris-HCl buffer (pH 7.0). The enzyme recovered 50% of its initial activity after 10 minutes at Mg2+concentrations higher than 0.1 mmol.L-1. Experimental concentrations of 0.1 mmol.L-1 Mn2+ and 1.0 mmol.L-1 Co2+ were sufficient to reactivate the enzyme to around 300% of the control activity for the Mn2+ ion and nearly 100% for the Co2+ ion. The enzyme gradually lost its activity when the Co2+ concentration was 10-2 mol.L-1. Ni2+ and Zn2+ were unable to restore the catalytic activity. Km app and Vmax app were 1.95 ± 0.05 mmol.L-1 and 5.40 ± 0.86x10-2 mmol.min-1.mg-1, with o-NPG as substrate. Optimal temperature and pH were 34oC and 7.5. The half-life (t1/2) at 30°C was 17.5 min for the holoenzyme and 11.0 min for the apoenzyme. With respect to pH variation, the apoenzyme proved to be more sensitive than the holoenzyme. Keywords: β-galactosidase. Divalent metallic ions. Enzyme activity. Stability. RESUMO Efeito de íons metálicos divalentes na atividade e estabilidade da β-galactosidase isolada de Kluyveromyces lactis Este estudo demonstra como a β-galactosidase pode ser desativada e reativada usando EDTA e íons metálicos divalentes. A enzima foi desativada após 20 minutos na presença de EDTA. Desativação máxima para a menor concentração de EDTA (10-3 mol.L-1) ocorreu na presença do tampão Tris-HCl. A enzima recuperou 50% de sua atividade inicial após 10 minutos na presença de Mg2+ em concentrações superiores a 0,1mmol.L-1. Concentrações de 10-4 e 10-3mol.L-1 de Mn2+ e Co2+ foram suficientes para reativar a enzima em 300% comparado ao controle de íons Mn2+ e aproximadamente 100% para íons Co2+. A enzima perdeu gradualmente a sua atividade quando a concentração foi de 10-2 mol.L-1. Ni2+ e Zn2+ foram incapazes de restabelecer a atividade catalítica. Km app e Vmax app foram 1,95 ± 0,05 mmol.L-1 e 5,40 ± 0,86 x 10-2 mmol.min-1.mg-1. A temperatura e pH ótimos foram 34ºC e 7,5. A meia vida da holoenzima foi de 17,5 min a 30ºC e para a apoenzima foi de 11,0 min a 30ºC. Quanto à variação de pH, a apoenzima provou ser mais sensível que a holoenzima. Palavras-chave: β-galactosidase. Íons metálicos divalentes. Atividade enzimática. Estabilidade.
Resumo:
Background: Even before having its genome sequence published in 2004, Kluyveromyces lactis had long been considered a model organism for studies in genetics and physiology. Research on Kluyveromyces lactis is quite advanced and this yeast species is one of the few with which it is possible to perform formal genetic analysis. Nevertheless, until now, no complete metabolic functional annotation has been performed to the proteins encoded in the Kluyveromyces lactis genome. Results: In this work, a new metabolic genome-wide functional re-annotation of the proteins encoded in the Kluyveromyces lactis genome was performed, resulting in the annotation of 1759 genes with metabolic functions, and the development of a methodology supported by merlin (software developed in-house). The new annotation includes novelties, such as the assignment of transporter superfamily numbers to genes identified as transporter proteins. Thus, the genes annotated with metabolic functions could be exclusively enzymatic (1410 genes), transporter proteins encoding genes (301 genes) or have both metabolic activities (48 genes). The new annotation produced by this work largely surpassed the Kluyveromyces lactis currently available annotations. A comparison with KEGG’s annotation revealed a match with 844 (~90%) of the genes annotated by KEGG, while adding 850 new gene annotations. Moreover, there are 32 genes with annotations different from KEGG. Conclusions: The methodology developed throughout this work can be used to re-annotate any yeast or, with a little tweak of the reference organism, the proteins encoded in any sequenced genome. The new annotation provided by this study offers basic knowledge which might be useful for the scientific community working on this model yeast, because new functions have been identified for the so-called metabolic genes. Furthermore, it served as the basis for the reconstruction of a compartmentalized, genome-scale metabolic model of Kluyveromyces lactis, which is currently being finished.
Resumo:
The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha1-->2-linked N-acetylglucosamine. The biosynthesis of these chains probably occurs in the lumen of the Golgi apparatus, by analogy to S. cerevisiae. The sugar donors, GDP-mannose and UDP-GlcNAc, must first be transported from the cytosol, their site of synthesis, via specific Golgi membrane transporters into the lumen where they are substrates in the biosynthesis of these mannoproteins. A mutant of K. lactis, mnn2-2, that lacks terminal N-acetylglucosamine in its mannan chains in vivo, has recently been characterized and shown to have a specific defect in transport of UDP-GlcNAc into the lumen of Golgi vesicles in vitro. We have now cloned the gene encoding the K. lactis Golgi membrane UDP-GlcNAc transporter by complementation of the mnn2-2 mutation. The mnn2-2 mutant was transformed with a genomic library from wild-type K. lactis in a pKD1-derived vector; transformants were isolated and phenotypic correction was monitored following cell surface labeling with fluorescein isothiocyanate conjugated to Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescent activated cell sorter. A 2.4-kb DNA fragment was found to restore the wild-type lectin binding phenotype. Upon loss of the plasmid containing this fragment, reversion to the mutant phenotype occurred. The above fragment contained an open reading frame for a multitransmembrane spanning protein of 328 amino acids. The protein contains a leucine zipper motif and has high homology to predicted proteins from S. cerevisiae and C. elegans. In an assay in vitro, Golgi vesicles isolated from the transformant had regained their ability to transport UDP-GlcNAc. Taken together, the above results strongly suggest that the cloned gene encodes the Golgi UDP-GlcNAc transporter of K. lactis.
Resumo:
This research is about producing recombinant Trichoderma reesei endoglucanase Cel7B by using Kluyveromyces lactis, transformed with chromosomally integrated Cel7B cDNA, as a host cell (K. lactis Cel7B). Cel7B is one of the glycoside hydrolyze family of proteins that are produced by T. reesei. Cel7B together with other endoglucanases, exoglucanases, and â-glucosidases hydrolyze cellulose to glucose, which can then be fermented to biofuels or other value-added products. The research objective of this MS project is to examine favorable fermentation conditions for recombinant Cel7B enzyme production and improved activity. Production of enzyme on different types of media was examined, and the activity of the enzyme was measured by using different tools or procedures. The first condition tested for was using different concentrations of galactose as a carbon and energy source; however galactose also acts as a potent promoter of recombinant Cel7B expression in K. lactis Cel7B. The purpose of this method is to determine the relationship between production of enzyme with increasing sugar concentration. The second culture condition test was using different types of media: a complex medium-yeast extract, peptone, galactose (YPGal); a minimal medium-yeast nitrogen base (YNB) with galactose; and a minimal medium with supplement-yeast nitrogen base with casamino acid (YBC), a nitrogen source, with galactose. The third condition was using different types of reactors or fermenters: a small reactor (shake flask) and a larger automated bioreactor (BioFlo 3000 fermenter). The purpose of this method is to determine the quantity of the protein produced by using different environments of production. Different tools to determine the presence and activity of Cel7B enzyme were used. For the presence of enzyme, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used. Secondly, to detect enzyme activity, the carboxymethyl cellulose- 3,5-dinitrosalicylic acid (CMC- DNS) assay was employed. SDS-PAGE showed that the enzyme band was at 67 kDa, which is larger than native Cel7B (52 kDa.), likely due to over glycolylation during post-translational processing in K. lactis. For the different types of media used in our fermentation, recombinant Cel7B was produced from yeast extract peptone galactose (YPGal), and yeast nitrogen base with casamino acid (YBC), but was not produced and no activity was detected from yeast nitrogen base (YNB). This experiment concluded that the Cel7B production requires the amino acid resources as part of fermentation medium. In experiments where recombinant Cel7B net activity was measured at 1% galactose initial concentration in YPGal and YBC media, higher enzyme activity was detected for the complex medium YPGal. Higher activity of recombinant Cel7B was detected for flask culture in 2% galactose compared to 1% galactose for YBC medium. Two bioreactor experiments were conducted under these culture conditions at 30°C, pH 7.0, dissolved oxygen of 50% of saturation, and 250 rpm agitation (variable depending on DO control) K. lactis-Cel7B yeast growth curves were quite reproducible with maximum optical density (O.D) at 600 nm of between 7 and 8 (when factoring dilution of 10:1). Galactose was consumed rapidly during the first 15 hours of bioreactor culture and recombinant Cel7B started to appear in the culture at 10-15 hours and increased thereafter up to a maximum of between 0.9 and 1.6 mg/mL/hr in these experiments. These bioreactor enzyme activity results are much higher than comparable experiments conducted with flask-scale culture (0.5 mg/mL/hr). In order to achieve the highest recombinant Cel7B activity from batch culture of K. lactis-Cel7B, based on this research it is best to use a complex medium, 2% initial galactose concentration, and an automated bioreactor where good control of temperature, pH, and dissolved oxygen can be achieved.
Resumo:
To better understand the dynamic behavior of metabolic networks in a wide variety of conditions, the field of Systems Biology has increased its interest in the use of kinetic models. The different databases, available these days, do not contain enough data regarding this topic. Given that a significant part of the relevant information for the development of such models is still wide spread in the literature, it becomes essential to develop specific and powerful text mining tools to collect these data. In this context, this work has as main objective the development of a text mining tool to extract, from scientific literature, kinetic parameters, their respective values and their relations with enzymes and metabolites. The approach proposed integrates the development of a novel plug-in over the text mining framework @Note2. In the end, the pipeline developed was validated with a case study on Kluyveromyces lactis, spanning the analysis and results of 20 full text documents.
Resumo:
Abstract The commercial enzyme (E.C. = 3.2.1.23) from Kluyveromyces lactis (liquid) and Aspergillus oryzae(lyophilized) was investigated for its hydrolysis potential in lactose substrate, UHT milk, and skimmed milk at different concentrations (0.7; 1.0 and 1.5%), pH values (5.0; 6.0; 6.5 and 7.0), and temperature (30; 35; 40 and 55 ºC). High hydrolysis rates were observed for the enzyme from K. lactis at pH 7.0 and 40 ºC, and from A. oryzae at pH 5.0 and 55 ºC. The enzyme from K. lactis showed significantly higher hydrolysis rates when compared to A. oryzae. The effect of temperature and β-galactosidase concentration on the lactose hydrolysis in UHT milk was higher than in skimmed milk, for all temperatures tested. With respect to the thermal stability, a decrease in hydrolysis rate was observed at pH 6.0 at 35 ºC for K. lactisenzyme, and at pH 6.0 at 55 ºC for the enzyme from A. oryzae. This study investigate the hydrolysis of β-galactosidase in UHT and skimmed milk. The knowledge about the characteristics of the β-galactosidase fromK. lactis and A. oryzae enables to use it most efficiently to control the enzyme concentration, temperature, and pH in many industrial processes and product formulations.
Resumo:
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed.
Resumo:
The aim of this study was to know the yeast biodiversity from fresh olive (Olea europaea L.) fruits, olive paste (crush olives) and olive pomace (solid waste) from Arbequina and Cornicabra varieties. Yeasts were isolated from fruits randomly harvested at various olive groves in the region of Castilla La Mancha (Spain). Olive paste and pomace, a byproduct of the processing of this raw material, were also collected in sterile flasks from different oil mills. Molecular identification methodology used included comparison of polymerase chain reaction (PCR) amplicons of their 5.8S rRNA gene and internal transcribed spacers ITS1 and ITS2 followed by restriction pattern analysis (RFLP). For some species, sequence analysis of the 5.8S rDNA gene was necessary. The results were compared to sequences held in public databases (BLAST). These techniques allowed to identify fourteen different species of yeasts, belonging to seven different genera (Zygosaccharomyces, Pichia, Lachancea, Kluyveromyces, Saccharomyces, Candida, Torulaspora) from the 108 yeast isolates. Species diversity was thus considerable: Pichia caribbica, Zygosaccharomyces fermentati (Lachancea fermentati) and Pichia holstii (Nakazawaea holstii) were the most commonly isolated species, followed by Pichia mississippiensis, Lachancea sp., Kluyveromyces thermotolerans and Saccharomyces rosinii. The biotechnological properties of these isolates, was also studied. For this purpose, the activity of various enzymes (beta-glucosidase, beta-glucanase, carboxymethylcellulase, polygalacturonase, peroxidase and lipase) was evaluated. It was important that none of species showed lipase activity, a few had cellulase and polygalacturonase activities and the majority of them presented beta-glucanase, beta-glucosidase and peroxidase activities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Four different intertidal estuarine sediments had distinct yeast communities. One-hundred-ninety-three yeast isolates were classified in 47 species, with 34 of these in the genus Candida. Candida tropicalis was the only ascomycetous species isolated from all four sites. Other opportunistic pathogens including Candida glabrata, Candida guilliermondii, Candida parapsilosis and Candida krusei were present, especially at the more polluted sites. Pichia species were also frequent isolates with Pichia membranaefaciens, and its anamorph, Candida valida, and other phenotypically similar low assimilation profile species the most frequent. Kluyveromyces aestuarii was prevalent at the only site with well established mangrove vegetation, but not present at the other sites. The sediment yeast communities were distinct from each other, but more similar to each other than to the yeast communities of other ecosystems in the same geographic region.
Resumo:
Significant amounts of wastes are generated by the coffee industry, among of which, coffee silverskin (CS) and spent coffee grounds (SCG) are the most abundantly generated during the beans roasting and instant coffee preparation, respectively. This study evaluated the sugars metabolism and production of ethanol by three different yeast strains (Saccharomyces cerevisiae, Pichia stipitis and Kluyveromyces fragilis) when cultivated in sugar rich hydrolysates produced by acid hydrolysis of CS and SCG. S. cerevisiae provided the best ethanol production from SCG hydrolysate (11.7 g/l, 50.2% efficiency). On the other hand, insignificant (<= 1.0 g/l) ethanol production was obtained from CS hydrolysate, for all the evaluated yeast strains, probably due to the low sugars concentration present in this medium (approx. 22 g/l). It was concluded that it is possible to reuse SCG as raw material for ethanol production, which is of great interest for the production of this biofuel, as well as to add value to this agro-industrial waste. CS hydrolysate, in the way that is produced, was not a suitable fermentation medium for ethanol production; however, the hydrolysate concentration for the sugars content increase previous the use as fermentation medium could be an alternative to overcome this problem. (C) 2011 Elsevier Ltd. All rights reserved.