629 resultados para Juntas soldadas


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research project focused primarily on assessing the impact toughness of the weld and the base material of a steel pipe API 5L X70 submerged arc welded, used to conduct remote oil and gas (linepipes). The analysis followed strictly the Specification for Line Pipe - API 5L Standard, regarding the removal of the specimens of regions-of-proof-long section of the pipe, at 90o and 180o from the welded joint, and mechanical properties of toughness and Charpy-V, both the joint welded as the base material. Specimens of steel tube supplied by Tenaris Confab-SA were sized for tensile and Charpy-V, according to ASTM E 8M and ASTM E23, respectively. The result obtained showed that the API X70 steel tube has high Charpy-V toughness, near to each other at both 90o and 180o from the welded joint of the tube, and both higher than the weld metal. Microstructural and microhardness analysis complemented the present study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a bolted joint is loaded in tension with dynamically, part of this load is absorbed by the bolt and rest is absorbed by the joint material. What determines the portion that is to absorbed by the bolt is the joint stiffness factor. This factor influences the tension which corresponds to pre-load and the safety factor for fatigue failure, thus being an important factor in the design of bolted joints. In this work, three methods of calculating the stiffness factor are compared through a spreadsheet in Excel software. The ratio of initial pre-load and the safety factor for fatigue failure depending on the stiffness factor graph is generated. The calculations for each method show results with a small difference. It is therefore recommended that each project case is analyzed, and depending on its conditions and the range of stiffness values, the more or less rigid method about the safety factor for fatigue failure is chosen. In general, the approximation method provides consistent results and can be easily calculated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies about structural integrity are very important when it desires to prevent disasters associated with flaws inherent in materials used in structural components. The welded joints in steel pipes used to conduction and distribution of oil and gas correspond to the regions most susceptible to flaw. Aiming to contribute to this research line, the present study was designed to assess experimentally the structural integrity of welded joints in steel pipes API 5L X70 used in pipeline systems. This assessment is given from tests of CTOD, whose aim is simulate in laboratory the real behaviour of crack from of his propagation on the welded joint obtained by high frequency electric resistance welding. In this case, the analyses are performed from specimens SE(B) obtained directly of steel pipe API 5L X70. The proposed methodology involves tests of CTOD at lower temperature, in order to assess the toughness of material in critical operation conditions. From performance of CTOD tests, was possible assess the toughness of welded joints in terms of quantity through CTOD parameter and in terms of quality from behaviour of curve load versus CMOD. In this study, also, sought to compare CTOD’s results obtained through rules ASTM E1820 (2008) and BS 7448 (1991). Although the two standards cited previously have adopted different parameters to calculated the value of CTOD, concluded that the values of CTOD tend to converge for a common value

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work examines the possible effects of successive repair procedures on the microstructure of welded steel SAE 4130 by TIG welding process. Discussions and results were made about the metallographic analysis , non-metallic inclusions and microhardness tests , which were conducted on samples taken from the cradle engine component after the end of its life , a model airplane T-27 Tucano , made by EMBRAER and belonging were performed FAB . The choice of such component is due to the fact that this is critical to flight safety since it provides support for the aircraft engine . Thus regions of the weld metal , base metal and heat affected , with samples of the original weld bead , free of weld bead and also with four rework procedures for TIG welding zone were analyzed . It was found that after the fourth rework there is an increase in the amount of martensite , which may weaken the material with respect to resistance to fatigue. It was also found that the regions of the heat affected zone and weld metal have higher microhardness values when compared to those found in the base metal due to favoring the formation of ferritic and tempered martensite microstructures . Moreover, a welding process promotes a region with less non-metallic inclusions than metal base , which also explains the difference in the results obtained

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work performs a comparative study of fatigue life of riveted lap joints involving classes of drilling which adjustment is made with interference or clearance. For this study, representative specimens of this joints were manufactured with four rivets distributed in two rows. In this context, are presented the test matrix, the methodology employed in performing of the tests, the used mathematical modeling, and that methods that are the basis for the latter are described through the theoretical foundation. Next, are present the results obtained in fatigue tests and images of the region of failure of the specimens. Finally, are present some comments and conclusions related to the results obtained

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The technological advancement in order to improve the methods of obtaining energy sources such as oil and natural gas is mainly motivated by the recent discovery of oil reserves. So, increasingly , there is a need for a thorough knowledge of the materials used in the manufacture of pipelines for transportation and exploration of oil and natural gas. The steels which follow the API standard (American Petroleum Institute), also known as high strenght low alloy (hsla), are used in the manufacture of these pipes, as they have, with their welded joints, mechanical properties to withstand the working conditions to which these ducts will be submitted . The objective of this study is to evaluate the fatigue behavior in microalloyed steel grade API 5L X80 welded by process HF / ERW . For this, axial fatigue tests to obtain S-N curve (stress vs. number of cycles ) were conducted. To complement the study, it was performed metallographic , fractographic , Vickers hardness tests and tensile tests to characterize the mechanical properties of the steel and check whether the values satisfy the specifications of the API 5L standard . From the fatigue tests , it was concluded that the surface finish influences directly on the fatigue life of the material

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plastic deformation is widely used in the metallurgical market due to its positive factors such as low prices and high speed production. Forming process products are obtained in high quality, both surface quality and mechanical properties. Friction is an importante factor in metal forming. Friction study in metal forming can be accomplished indirectly, such as the ring test of friction. Two samples of different materials being mild steel and copper alloy were used. The results showed the influence of friction in the flow behavior of the deformation of the second phase, as evidenced by standard metallography. It is observed that in the outer regions of the ring, plastic deformation occured in the radial direction. In the central region of the disc deformation occured in the direction of compression and the inner region of the ring flux lines showed a significant deformation in the radial direction towards the center of the ring

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work a study of an API 5L X70 steel, which is used in the manufacture of oil and gas pipelines, has been made. This class of steel show high strength and ductility values, and has been increasingly studied due the growing demand of oil and natural gas, which in consequence, increases the needing of new pipelines to transport them. The material studied has been directly taken from a tube provided by TenarisConfab, and a special attention has been given to the fatigue crack growth rate study, which proved that a crack will grow at different rates according to the tube position where it is growing

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT N80, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of non-metallic inclusions in the welded joint

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In contemporary industrial, welding processes are widely used, this is the most important process of joining metals used industrially. The welding can be used to build simple structures, like doors and gates for instance, in the same way can be used in situations of high responsibility, such as the nuclear industry and oil industry. Dissimilar welding is a case of welded joints, is characterized by the junction between different materials, for this case, stainless steel and carbon steel that are widely used in steam lines, power plants, nuclear reactors, petrochemical plants. Because their different mechanical and corrosive properties, the join, stainless steel with carbon steel, not only meets environmental requirements and also reduces cost. By using penetrating liquid tests, macrograph, hardness and tensile test was compared the possibility of replacing the current use of 309 rods as filler metal in dissimilar welding between carbon steel and stainless steel by add-on material carbon steel essentially, in this case E7018 coated electrode was used, but without the coating. After analysis of the results and for comparison, was proposed with some certainty that it is possible to replace the addition of materials, thus leading economy in this process widely used in the modern industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work focuses on a study on the fatigue behavior of a microalloyed steel API 5L X70, used in pipes lines to transport oil and gas. These types of steels have excellent mechanical resistance values and ductility and therefore increased their study driven by increased demand for oil and especially natural gas, which consequently raises the need to build new pipelines to transport these products. The oil extraction units, composed of the risers (pipelines connecting the oil well to the ship), are dimensioned to remain installed for periods of 20 to 30 years in the marine environment, a hostile environment for high pressure, corrosion, low temperatures and the stresses caused by the movement of water and tides. For analysis, the S-N (stress versus number of cycles) curves were obtained from data collected from bodies-of-proof cylindrical longitudinal, transverse and that one removed from the weld area of the pipe, tested in accordance with ASTM E466. Tensile tests were performed for characterizing the mechanical properties of the samples and welded joints, concluded that the values meet the specifications of the standard API 5L. To characterize microstructural material, also metallographic analysis was made of regions of the base metal and the HAZ. The results of fatigue tests demonstrated a higher life for the specimens removed from the longitudinal direction the pipe, followed by those in the transverse direction and, finally, the welded joint. The origins of the fatigue cracks were determined by scanning electron microscopy (SEM)