851 resultados para Jogos on line
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
A new online method is presented for estimation of the angular random walk and rate random walk coefficients of IMU (inertial measurement unit) gyros and accelerometers. The online method proposes a state space model and proposes parameter estimators for quantities previously measured from off-line data techniques such as the Allan variance graph. Allan variance graphs have large off-line computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of O(100) calculations per data sample.
Resumo:
BACKGROUND For engineering graduates to be work-ready with marketable skills they must not only be well-versed with engineering science and its applications, but also able to adapt to using commercial software that is widely used in engineering practice. Hydrological/hydraulic modelling is one aspect of engineering practice which demands the ability to apply fundamentals into design and construction using software. The user manuals for such software are usually tailored for the experienced engineer but not for undergraduates who typically are novices to concepts of modelling and software tools. As the focus of a course such as Advanced Water Engineering is on the wider aspects of engineering application of hydrological and hydraulic concepts, it is ineffective for the lecturers to direct the students to user manuals as students have neither the time nor the desire to sift through numerous pages in a manual. An alternative and efficient way to demonstrate the use of the software is enabling students to develop a model to simulate real-world scenario using the tools of the software and directing them to make informed decisions based on outcomes. PURPOSE Past experience of the lecturer showed that the resources available for the students left a knowledge gap leading to numerous student queries outside contact hours. The purpose of this study is to assess how effective purpose-built video resources can be in supplementing the traditional learning resources to enhance student learning. APPROACH Short-length animated video clips comprising guided step-by-step instructions were prepared using screen capture software to capture screen activity and later edited to focus on specific features using pop-up annotations; Vocal narration was purposely excluded to avoid disturbances due to noise and allow different learning paces of individual students. The video clips were made available to the students alongside the traditional resources/approaches such as in-class demonstrations, guideline notes, and tips for efficient and error-free procedural descriptions. The number of queries the lecturer received from the student cohort outside the lecture times was recorded. An anonymous survey to assess the usefulness and adequacy of the courseware was conducted. OUTCOMES While a significant decline in the number of student queries was noted, an overwhelming majority of the survey respondents confirmed the usefulness of the purpose-developed courseware. CONCLUSIONS/RECOMMENDATIONS/SUMMARY The survey and lecturer’s experience indicated that animated demonstration video clips illustrating the various steps involved in developing hydrologic and hydraulic models and simulating design scenarios is an effective supplement for traditional learning resources. Among the many advantages of the custom-made video clips as a learning resource are that they (1) highlight the aspects that are important to undergraduate learning but not available in the software manuals as the latter are designed for more mature users/learners; (2) provide short, to-the point communication in a step-by-step manner; (3) allow students flexibility to self-learn at their own pace; (4) enhance student learning; and (5) enable time savings for the lecturer in the long term by avoiding queries of a repetitive nature. It is expected that these newly developed resources will be improved to incorporate students’ suggestions before being offered to future cohorts of students. The concept can also be expanded to other relevant courses where animated demonstrations of key modelling steps are beneficial to student learning.
Resumo:
An on-line algorithm is developed for the location of single cross point faults in a PLA (FPLA). The main feature of the algorithm is the determination of a fault set corresponding to the response obtained for a failed test. For the apparently small number of faults in this set, all other tests are generated and a fault table is formed. Subsequently, an adaptive procedure is used to diagnose the fault. Functional equivalence test is carried out to determine the actual fault class if the adaptive testing results in a set of faults with identical tests. The large amount of computation time and storage required in the determination, a priori, of all the fault equivalence classes or in the construction of a fault dictionary are not needed here. A brief study of functional equivalence among the cross point faults is also made.
Resumo:
An on-line algorithm is developed for the location of single cross point faults in a PLA (FPLA). The main feature of the valgorithm is the determination of a fault set corresponding to the response obtained for a failed test. For the apparently small number of faults in this set, all other tests are generated and a fault table is formed. Subsequently, an adaptive procedure is used to diagnose the fault. Functional equivalence test is carried out to determine the actual fault class if the adaptive testing results in a set of faults with identical tests. The large amount of computation time and storage required in the determination, a priori, of all the fault equivalence classes or in the construction of a fault dictionary are not needed here. A brief study of functional equivalence among the cross point faults is also made.
Resumo:
The main objective of on-line dynamic security assessment is to take preventive action if required or decide remedial action if a contingency actually occurs. Stability limits are obtained for different contingencies. The mode of instability is one of the outputs of dynamic security analysis. When a power system becomes unstable, it splits initially into two groups of generators, and there is a unique cutset in the transmission network known as critical cutset across which the angles become unbounded. The knowledge of critical cutset is additional information obtained from dynamic security assessment, which can be used for initiating preventive control actions, deciding emergency control actions, and adaptive out-of-step relaying. In this article, an analytical technique for the fast prediction of the critical cutset by system simulation for a short duration is presented. Case studies on the New England ten-generator system are presented. The article also suggests the applications of the identification of critical cutsets.
Resumo:
With technology scaling, vulnerability to soft errors in random logic is increasing. There is a need for on-line error detection and protection for logic gates even at sea level. The error checker is the key element for an on-line detection mechanism. We compare three different checkers for error detection from the point of view of area, power and false error detection rates. We find that the double sampling checker (used in Razor), is the simplest and most area and power efficient, but suffers from very high false detection rates of 1.15 times the actual error rates. We also find that the alternate approaches of triple sampling and integrate and sample method (I&S) can be designed to have zero false detection rates, but at an increased area, power and implementation complexity. The triple sampling method has about 1.74 times the area and twice the power as compared to the Double Sampling method and also needs a complex clock generation scheme. The I&S method needs about 16% more power with 0.58 times the area as double sampling, but comes with more stringent implementation constraints as it requires detection of small voltage swings.
Resumo:
The paper propose a unified error detection technique, based on stability checking, for on-line detection of delay, crosstalk and transient faults in combinational circuits and SEUs in sequential elements. The proposed method, called modified stability checking (MSC), overcomes the limitations of the earlier stability checking methods. The paper also proposed a novel checker circuit to realize this scheme. The checker is self-checking for a wide set of realistic internal faults including transient faults. Extensive circuit simulations have been done to characterize the checker circuit. A prototype checker circuit for a 1mm2 standard cell array has been implemented in a 0.13mum process.
Resumo:
This paper presents the development of a neural network based power system stabilizer (PSS) designed to enhance the damping characteristics of a practical power system network representing a part of Electricity Generating Authority of Thailand (EGAT) system. The proposed PSS consists of a neuro-identifier and a neuro-controller which have been developed based on functional link network (FLN) model. A recursive on-line training algorithm has been utilized to train the two neural networks. Simulation results have been obtained under various operating conditions and severe disturbance cases which show that the proposed neuro-PSS can provide a better damping to the local as well as interarea modes of oscillations as compared to a conventional PSS
Resumo:
High-power voltage-source inverters (VSI) are often switched at low frequencies due to switching loss constraints. Numerous low-switching-frequency PWM techniques have been reported, which are quite successful in reducing the total harmonic distortion under open-loop conditions at such low operating frequencies. However, the line current still contains low-frequency components (though of reduced amplitudes), which are fed back to the current loop controller during closed-loop operation. Since the harmonic frequencies are quite low and are not much higher than the bandwidth of the current loop, these are amplified by the current controller, causing oscillations and instability. Hence, only the fundamental current should be fed back. Filtering out these harmonics from the measured current (before feeding back) leads to phase shift and attenuation of the fundamental component, while not eliminating the harmonics totally. This paper proposes a method for on-line extraction of the fundamental current in induction motor drives, modulated with low-switching-frequency PWM. The proposed method is validated through simulations on MATLAB/Simulink. Further, the proposed algorithm is implemented on Cyclone FPGA based controller board. Experimental results are presented for an R-L load.
Resumo:
This paper explores an on-line experimental method to highlight the process of internal damage development in composites by taking advantage of ultrasonic inspection. A loading device, which can work together with an ultrasonic inspection system, was designed, and the interlaminar shear damage of a double-sided grooved specimen of composite was examined on-line with the system. A full view of the progressive internal interlaminar damage, seen only with difficulty by common inspection methods, was successfully achieved.