936 resultados para Jewitt, Carey: Handbook of visual analysis
Resumo:
Organizations can use the valuable tool of data envelopment analysis (DEA) to make informed decisions on developing successful strategies, setting specific goals, and identifying underperforming activities to improve the output or outcome of performance measurement. The Handbook of Research on Strategic Performance Management and Measurement Using Data Envelopment Analysis highlights the advantages of using DEA as a tool to improve business performance and identify sources of inefficiency in public and private organizations. These recently developed theories and applications of DEA will be useful for policymakers, managers, and practitioners in the areas of sustainable development of our society including environment, agriculture, finance, and higher education sectors. All rights reserved.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, Dissertation, 2015
Resumo:
A set of five tasks was designed to examine dynamic aspects of visual attention: selective attention to color, selective attention to pattern, dividing and switching attention between color and pattern, and selective attention to pattern with changing target. These varieties of visual attention were examined using the same set of stimuli under different instruction sets; thus differences between tasks cannot be attributed to differences in the perceptual features of the stimuli. ERP data are presented for each of these tasks. A within-task analysis of different stimulus types varying in similarity to the attended target feature revealed that an early frontal selection positivity (FSP) was evident in selective attention tasks, regardless of whether color was the attended feature. The scalp distribution of a later posterior selection negativity (SN) was affected by whether the attended feature was color or pattern. The SN was largely unaffected by dividing attention across color and pattern. A large widespread positivity was evident in most conditions, consisting of at least three subcomponents which were differentially affected by the attention conditions. These findings are discussed in relation to prior research and the time course of visual attention processes in the brain. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Age-related changes and the effects of dementia of the Alzheimer type (DAT) were investigated during a visual orienting attention task in which attention was pre-cued to one or other hemifields. Central cues were either valid, neutral, invalid or NoGo (inhibitory). The response time cost-benefit analysis showed a decreased benefit after valid cueing in the old compared with the young group with no change in the cost of invalid cueing. The older group were also slower over all cue types. These results suggest there is an age-related reduced ability to covertly orient attention in a visual hemifield before target onset. In contrast, the DAT group showed an increased response time benefit and showed a trend for a decreased cost in response time compared with controls. This was due to slowest response times after neutral cues. They also made significantly more response errors particularly following neutral cueing, and were less able to inhibit responses on NoGo trials than controls. The increased benefit and reduced cost found in the DAT group was interpreted as an impairment in dividing attention between left and right target locations.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This study aimed to determine and evaluate the diagnostic accuracy of visual screening tests for detecting vision loss in elderly. This study is defined as study of diagnostic performance. The diagnostic accuracy of 5 visual tests -near convergence point, near accommodation point, stereopsis, contrast sensibility and amsler grid—was evaluated by means of the ROC method (receiver operating characteristics curves), sensitivity, specificity, positive and negative likelihood ratios (LR+/LR−). Visual acuity was used as the reference standard. A sample of 44 elderly aged 76.7 years (±9.32), who were institutionalized, was collected. The curves of contrast sensitivity and stereopsis are the most accurate (area under the curves were 0.814−p = 0.001, C.I.95%[0.653;0.975]— and 0.713−p = 0.027, C.I.95%[0,540;0,887], respectively). The scores with the best diagnostic validity for the stereopsis test were 0.605 (sensitivity 0.87, specificity 0.54; LR+ 1.89, LR−0.24) and 0.610 (sensitivity 0.81, specificity 0.54; LR+1.75, LR−0.36). The scores with higher diagnostic validity for the contrast sensibility test were 0.530 (sensitivity 0.94, specificity 0.69; LR+ 3.04, LR−0.09). The contrast sensitivity and stereopsis test's proved to be clinically useful in detecting vision loss in the elderly.
Resumo:
The aging of Portuguese population is characterized by an increase of individuals aged older than 65 years. Preventable visual loss in older persons is an important public health problem. Tests used for vision screening should have a high degree of diagnostic validity confirmed by means of clinical trials. The primary aim of a screening program is the early detection of visual diseases. Between 20% and 50% of older people in the UK have undetected reduced vision and in most cases is correctable. Elderly patients do not receive a systematic eye examination unless a problem arises with their glasses or suspicion vision loss. This study aimed to determine and evaluate the diagnostic accuracy of visual screening tests for detecting vision loss in elderly. Furthermore, it pretends to define the ability to find the subjects affected with vision loss as positive and the subjects not affected with the same disease as negative. The ideal vision screening method should have high sensitivity and specificity for early detection of risk factors. It should be also low cost and easy to implement in all geographic and socioeconomic regions. Sensitivity is the ability of an examination to identify the presence of a given disease and specificity is the ability of the examination to identify the absence of a given disease. It was not an aim of this study to detect abnormalities that affect visual acuity. The aim of this study was to find out what´s the best test for the identification of any vision loss.
Resumo:
Dissertação de Mestrado Apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Tradução e Interpretação Especializadas, sob orientação da Mestre Suzana Noronha Cunha
Resumo:
BACKGROUND: Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. OBJECTIVE: The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed.METHODS: The effect of emotional valence and visualization types and their interaction were analyzed through a 3x2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. RESULTS: The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. CONCLUSIONS: This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios’ valence) and their interaction with three-dimensionality.
Resumo:
Purpose:To functionally and morphologically characterize the retina and optic nerve after transplantation of Brain-derived neurotrophic factor (BDNF) and Glial-derived neurotrophic factor (GDNF) secreting mesenchymal stem cells (MSCs) into glaucomatous rat eyes. Methods:Chronic ocular hypertension (COH) was induced in Brown Norway rats. Lentiviral constructs were used to transduce rat MSCs to produce BDNF, GDNF, or green fluorescent protein (GFP). The fellow eyes served as internal controls. Two days following COH induction, eyes received intravitreal injections of transduced MSCs. Electroretinography was performed to assess retinal function. Tonometry was performed throughout the experiment to monitor IOP. 42 days after MSC transplantation, rats were euthanized and the eyes and optic nerves were prepared for analysis. Results:Increased expression and secretion of BDNF and GDNF from lentiviral-transduced MSCs was verified using ELISA, and a bioactivity assay. Ratio metric analysis (COH eye/ Internal control eye response) of the Max combined response A-Wave showed animals with BDNF-MSCs (23.35 ± 5.15%, p=0.021) and GDNF-MSCs (28.73 ± 3.61%, p=0.025) preserved significantly more visual function than GFP-MSC treated eyes MSCs (18.05 ± 5.51%). Animals receiving BDNF-MSCs also had significantly better B-wave (33.80 ± 7.19%) and flicker ERG responses (28.52 ± 10.43%) than GFP-MSC treated animals (14.06 ± 12.67%; 3.52 ± 0.07%, respectively). Animals receiving GDNF-MSC transplants tended to have better function than animals with GFP-MSC transplants, but were not statistically significant (p=0.057 and p=0.0639). Conclusions:Mesenchymal stem cells are an excellent source of cells for autologous transplantation for the treatment of neurodegenerative diseases. We have demonstrated that lentiviral- transduced MSCs can survive following transplantation and preserve visual function in glaucomatous eyes. These results suggest that MSCs may be an ideal cellular vehicle for delivery of specific neurotrophic factors to the retina.
Resumo:
PURPOSE: The aim of this work is to investigate the characteristics of eyes failing to maintain visual acuity (VA) receiving variable dosing ranibizumab for neovascular age-related macular degeneration (nAMD) after three initial loading doses. METHODS: A consecutive series of patients with nAMD, who, after three loading doses of intravitreal ranibizumab (0.5 mg each), were re-treated for fluid seen on optical coherence tomography. After exclusion of eyes with previous treatment, follow-up less than 12 months, or missed visits, 99 patients were included in the analysis. The influence of baseline characteristics, initial VA response, and central retinal thickness (CRT) fluctuations on the VA stability from month 3 to month 24 were analyzed using subgroups and multiple regression analyses. RESULTS: Mean follow-up duration was 21.3 months (range 12-40 months, 32 patients followed-up for ≥24 months). Secondary loss of VA (loss of five letters or more) after month 3 was seen in 30 patients (mean VA improvement from baseline +5.8 letters at month 3, mean loss from baseline -5.3 letters at month 12 and -9.7 at final visit up to month 24), while 69 patients maintained vision (mean gain +8.9 letters at month 3, +10.4 letters at month 12, and +12.8 letters at final visit up to month 24). Secondary loss of VA was associated with the presence of pigment epithelial detachment (PED) at baseline (p 0.01), but not with baseline fibrosis/atrophy/hemorrhage, CRT fluctuations, or initial VA response. Chart analysis revealed additional individual explanations for the secondary loss of VA, including retinal pigment epithelial tears, progressive fibrosis, and atrophy. CONCLUSIONS: Tissue damage due to degeneration of PED, retinal pigment epithelial tears, progressive fibrosis, progressive atrophy, or massive hemorrhage, appears to be relevant in causing secondary loss of VA despite vascular endothelial growth factor suppression. PED at baseline may represent a risk factor.
Resumo:
This Handbook contains a collection of articles describing instrumental techniques used for Materials, Chemical and Biosciences research that are available at the Scientific and Technological Centers of theUniversity of Barcelona (CCiTUB). The CCiTUB are a group of facilities of the UB that provide both the research community and industry with ready access to a wide range of major instrumentation.Together with the latest equipment and technology, the CCiTUB provide expertise in addressing the methodological research needs of the user community and they also collaborate in R+D+i Projectswith industry. CCiTUB specialists include technical and Ph.D.-level professional staff members who are actively engaged in methodological research. Detailed information on the centers’ resources andactivities can be found at the CCiTUB website www.ccit.ub.edu ...
Resumo:
The cellular structure of healthy food products, with added dietary fiber and low in calories, is an important factor that contributes to the assessment of quality, which can be quantified by image analysis of visual texture. This study seeks to compare image analysis techniques (binarization using Otsu’s method and the default ImageJ algorithm, a variation of the iterative intermeans method) for quantification of differences in the crumb structure of breads made with different percentages of whole-wheat flour and fat replacer, and discuss the behavior of the parameters number of cells, mean cell area, cell density, and circularity using response surface methodology. Comparative analysis of the results achieved with the Otsu and default ImageJ algorithms showed a significant difference between the studied parameters. The Otsu method demonstrated the crumb structure of the analyzed breads more reliably than the default ImageJ algorithm, and is thus the most suitable in terms of structural representation of the crumb texture.
Resumo:
The consumers are becoming more concerned about food quality, especially regarding how, when and where the foods are produced (Haglund et al., 1999; Kahl et al., 2004; Alföldi, et al., 2006). Therefore, during recent years there has been a growing interest in the methods for food quality assessment, especially in the picture-development methods as a complement to traditional chemical analysis of single compounds (Kahl et al., 2006). The biocrystallization as one of the picture-developing method is based on the crystallographic phenomenon that when crystallizing aqueous solutions of dihydrate CuCl2 with adding of organic solutions, originating, e.g., from crop samples, biocrystallograms are generated with reproducible crystal patterns (Kleber & Steinike-Hartung, 1959). Its output is a crystal pattern on glass plates from which different variables (numbers) can be calculated by using image analysis. However, there is a lack of a standardized evaluation method to quantify the morphological features of the biocrystallogram image. Therefore, the main sakes of this research are (1) to optimize an existing statistical model in order to describe all the effects that contribute to the experiment, (2) to investigate the effect of image parameters on the texture analysis of the biocrystallogram images, i.e., region of interest (ROI), color transformation and histogram matching on samples from the project 020E170/F financed by the Federal Ministry of Food, Agriculture and Consumer Protection(BMELV).The samples are wheat and carrots from controlled field and farm trials, (3) to consider the strongest effect of texture parameter with the visual evaluation criteria that have been developed by a group of researcher (University of Kassel, Germany; Louis Bolk Institute (LBI), Netherlands and Biodynamic Research Association Denmark (BRAD), Denmark) in order to clarify how the relation of the texture parameter and visual characteristics on an image is. The refined statistical model was accomplished by using a lme model with repeated measurements via crossed effects, programmed in R (version 2.1.0). The validity of the F and P values is checked against the SAS program. While getting from the ANOVA the same F values, the P values are bigger in R because of the more conservative approach. The refined model is calculating more significant P values. The optimization of the image analysis is dealing with the following parameters: ROI(Region of Interest which is the area around the geometrical center), color transformation (calculation of the 1 dimensional gray level value out of the three dimensional color information of the scanned picture, which is necessary for the texture analysis), histogram matching (normalization of the histogram of the picture to enhance the contrast and to minimize the errors from lighting conditions). The samples were wheat from DOC trial with 4 field replicates for the years 2003 and 2005, “market samples”(organic and conventional neighbors with the same variety) for 2004 and 2005, carrot where the samples were obtained from the University of Kassel (2 varieties, 2 nitrogen treatments) for the years 2004, 2005, 2006 and “market samples” of carrot for the years 2004 and 2005. The criterion for the optimization was repeatability of the differentiation of the samples over the different harvest(years). For different samples different ROIs were found, which reflect the different pictures. The best color transformation that shows efficiently differentiation is relied on gray scale, i.e., equal color transformation. The second dimension of the color transformation only appeared in some years for the effect of color wavelength(hue) for carrot treated with different nitrate fertilizer levels. The best histogram matching is the Gaussian distribution. The approach was to find a connection between the variables from textural image analysis with the different visual criteria. The relation between the texture parameters and visual evaluation criteria was limited to the carrot samples, especially, as it could be well differentiated by the texture analysis. It was possible to connect groups of variables of the texture analysis with groups of criteria from the visual evaluation. These selected variables were able to differentiate the samples but not able to classify the samples according to the treatment. Contrarily, in case of visual criteria which describe the picture as a whole there is a classification in 80% of the sample cases possible. Herewith, it clearly can find the limits of the single variable approach of the image analysis (texture analysis).
Resumo:
Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiforin/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is presented on repetition. In one previous study, the magnitude of diminished priming across exemplars was greater in the right relative to the left fusiform, suggesting greater exemplar specificity in the right. Another previous study, however, observed fusiform lateralization modulated by object viewpoint, but not object exemplar. The present fMRI study sought to determine whether the result of differential fusiform responses for perceptually different exemplars could be replicated. Furthermore, the role of the left fusiform cortex in object recognition was investigated via the inclusion of a lexical/semantic manipulation. Right fusiform cortex showed a significantly greater effect of exemplar change than left fusiform, replicating the previous result of exemplar-specific fusiform lateralization. Right fusiform and lateral occipital cortex were not differentially engaged by the lexical/semantic manipulation, suggesting that their role in visual object recognition is predominantly in the. C visual discrimination of specific objects. Activation in left fusiform cortex, but not left lateral occipital cortex, was modulated by both exemplar change and lexical/semantic manipulation, with further analysis suggesting a posterior-to-anterior progression between regions involved in processing visuoperceptual and lexical/semantic information about objects. The results are consistent with the view that the right fusiform plays a greater role in processing specific visual form information about objects, whereas the left fusiform is also involved in lexical/semantic processing. (C) 2003 Elsevier Science (USA). All rights reserved.