988 resultados para Jehuda Ha-NasiJehuda Ha-Nasi
Resumo:
1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.
Resumo:
The thesis examines rabbi Abraham Ibn Ezra's (11096-1064) conceptions of the relationship between religion and science with special focus on his seventh astrological treatise Sefer ha-Olam (The Book of the World). The thesis includes an analysis of medieval arabic astrology and the concepts science and religion in the relevant period. The appendix holds a tentative english translation of the hebrew text.
Resumo:
Digital image
Resumo:
One of the important issues in the development of hydroxyapatite (HA)-based biomaterials is the prosthetic infection, which limits wider use of monolithic HA despite superior cellular response. Recently, we reported that ZnO addition to HA can induce bactericidal property. It is therefore important to assess how ZnO addition influences the cytotoxicity property and cell adhesion/proliferation on HA-ZnO composite surfaces in vitro. In the above perspective, the objective of this study is to investigate the cell type and material composition dependent cellular proliferation and viability of pressureless sintered HA-ZnO composites. The combination of cell viability data as well as morphological observations of cultured human osteoblast-like SaOS2 cells and mouse fibroblast L929 cells suggests that HA-ZnO composites containing 10 Wt % or lower ZnO exhibit the ability to support cell adhesion and proliferation. Both SaOS2 and L929 cells exhibit extensive multidirectional network of actin cytoskeleton and cell flattening on the lower ZnO containing (=10 Wt %) HA-ZnO composites. The in vitro results illustrate how variation in ZnO content can influence significantly the cell vitality, as evaluated using MTT biochemical assay. Also, the critical statistical analysis reveals that ZnO addition needs to be carefully tailored to ensure good in vitro cytocompatibility. The underlying reasons for difference in biological properties are analyzed. It is suggested that surface wettability as well as dissolution of ZnO, both contribute to the observed differences in cellular viability and proliferation. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
Resumo:
The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Ultrahigh-molecular-weight polyethylene (UHMWPE) is used as an articulating surface in total hip and knee joint replacement. In order to enhance long-term durability/wear resistance properties, UHMWPE-based polymer-ceramic hybrid composites are being developed. Surface properties such as wettability and protein adsorption alter with reinforcement or with change in surface chemistry. From this perspective, the wettability and protein adsorption behavior of compression-molded UHMWPE-hydroxyapatite (HA)-aluminum oxide (Al2O3)-carbon nanotube (CNT) composites were analyzed in conjunction with surface roughness. The combined effect of Al2O3 and CNT shows enhancement of the contact angle by similar to 37A degrees compared with the surface of the UHMWPE matrix reinforced with HA. In reference to unreinforced UHMWPE, protein adsorption density also increased by similar to 230% for 2 wt.%HA-5 wt.%Al2O3-2 wt.%CNT addition to UHMWPE. An important conclusion is that the polar and dispersion components of the surface free energy play a significant role in wetting and protein adsorption than do the total free energy or chemistry of the surface. The results of this study have major implications for the biocompatibility of these newly developed biocomposites.
Resumo:
The present study reports the results of the detailed in vitro bioactivity and cytocompatibility properties of the hydroxyapatite (HA) and the HA-titanium (HA-Ti) composite with varying amount of Ti (5, 10, and 20 wt %), densified using spark plasma sintering process (SPS). Using this technique and tailoring suitable processing parameters, it has been possible to retain both HA and Ti in the sintered ceramics. Importantly, the uniquely designed SPS processing with suitably chosen parameters enables in achieving better mechanical properties, such as higher indentation fracture toughness (similar to 1.5 MPa m1/2) in HA-Ti composites compared with HA. X-ray diffraction and scanning electron microscopic (SEM) observations reveal good bioactivity of the HA-Ti composites with the formation of thick, flaky, and porous apatite layer when immersed in simulated body fluid at 37 degrees C and pH of 7.4. Atomic absorption spectroscopic analysis of the simulated body fluid solution reveals dynamic changes in Ca+2 ion concentration with more dissolution of Ca+2 ion from the HA-20Ti composite. However, the measurements with inductively coupled plasma spectrometer do not record dissolution of Ti+4 ions. Transmission electron microscopic analysis indicates weak crystalline nature of the apatite and confirms the formation of fine-scale apatite crystals. MTT assay, fluorescence, and SEM study demonstrate good cell viability and cell adhesion/proliferation of the Saos -2 cells, cultured on the developed composites under standard culture condition, and the difference in cell viability has been discussed in reference to substrate composition and roughness. Overall, HA-Ti composites exhibit comparable and even better in vitro bioactivity and cytocompatibility properties than HA. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.
Resumo:
The aim of this study was to investigate the in vivo biocompatibility in terms of healing of long segmental bone defect in rabbit model as well as in vitro cytotoxicity of eluates of compression-molded High density polyethylene (HDPE)hydroxyapatite (HA)-aluminum oxide (Al2O3) composite-based implant material. Based on the physical property in terms of modulus and strength properties, as reported in our recent publication, HDPE-40 wt % HA and HDPE-20 wt % HA-20 wt % Al2O3 hybrid composites were used for biocompatibility assessment. Osteoblasts cells were cultured in conditioned media, which contains varying amount of composite eluate (0.01, 0.1, and 1.0 wt %). In vitro, the eluates did not exhibit any significant negative impact on proliferation, mineralization or on morphology of human osteoblast cells. In vivo, the histological assessment revealed neobone formation at the bone/implant interface, characterized by the presence of osteoid and osteoblasts. The observation of osteoclastic activity indicates the process of bone remodeling. No inflammation to any noticeable extent was observed at the implantation site. Overall, the combination of in vitro and in vivo results are suggestive of potential biomedical application of compression-molded HDPE- 20 wt % HA- 20 wt % Al2O3 composites to heal long segmental bone defects without causing any toxicity of bone cells.
Resumo:
One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 degrees C) and frequency (100 Hz-1 MHz) dependent dielectric properties and AC conductivity for a range of HA-CaTiO3 (HA-CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics similar to upto 10(-5) (Omega cm)(-1)] are found to be considerably higher than the corresponding pressureless sintered ceramics similar to upto 10(-8) (Omega cm)(-1)]. Overall, the results indicate the processing route dependent functional properties of HA-CaTiO3 composites as well as related advantages of spark plasma sintering route. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Although HA is highly biocompatible, one of the major disadvantages of HA include the lack of antibacterial property. In an earlier study, we demonstrated the potential role of magnetic field stimulation on bactericidal property in vitro. Following this, it was hypothesized that antibacterial property can be realized if bacteria are grown on magnetic biocomposites in vitro. In addressing this issue, this study demonstrates the development of HA-Fe3O4-based magnetic substrate with multifunctional properties. For this purpose, HA-xFe(3)O(4) (x: 10, 20 and 40wt%) powder compositions were sintered using uniquely designed spark plasma sintering conditions (three stage sintering with final holding temperature of 1050 degrees C for 5min). A saturation magnetization of 24emu/g is measured with HA-40%Fe3O4. Importantly, all the HA-Fe3O4 composites demonstrated bactericidal property by rupturing the membrane of Escherichia coli bacteria, while supporting cell growth of metabolically active human fetal osteoblast cells over 8d culture. A systematic decrease in bacterial viability with Fe3O4 addition is consistent with a commensurate increase in reactive oxygen species (ROS).
Resumo:
This work reports the processing-microstructure-property correlation of novel HA-BaTiO3-based piezobiocomposites, which demonstrated the bone-mimicking functional properties. A series of composites of hydroxyapatite (HA) with varying amounts of piezoelectric BaTiO3 (BT) were optimally processed using uniquely designed multistage spark plasma sintering (SPS) route. Transmission electron microscopy imaging during in situ heating provides complementary information on the real-time observation of sintering behavior. Ultrafine grains (0.50m) of HA and BT phases were predominantly retained in the SPSed samples. The experimental results revealed that dielectric constant, AC conductivity, piezoelectric strain coefficient, compressive strength, and modulus values of HA-40wt% BT closely resembles with that of the natural bone. The addition of 40wt% BT enhances the long-crack fracture toughness, compressive strength, and modulus by 132%, 200%, and 165%, respectively, with respect to HA. The above-mentioned exceptional combination of functional properties potentially establishes HA-40wt% BT piezocomposite as a new-generation composite for orthopedic implant applications.
Resumo:
In addressing the issue of prosthetic infection, this work demonstrated the synergistic effect of the application of static magnetic field (SMF) and ferrimagnetic substrate properties on the bactericidal property in vitro. This aspect was studied using hydroxyapatite (HA)-xFe(3)O(4) (x=10, 20, and 40 wt.%) substrates, which have different saturation magnetization properties. During bacteria culture experiments, 100 mT SMF was applied to growth medium (with HA-xFe(3)O(4) substrate) in vitro for 30, 120, and 240 min. A combination of MTT assay, membrane rupture assays, live/dead assay, and fluorescence microscopic analysis showed that the bactericidal effect of SMF increases with the exposure duration as well as increasing Fe3O4 content in biomaterial substrates. Importantly, the synergistic bactericidal effect was found to be independent of bacterial cell type, as similar qualitative trend is measured with both gram negative Escherichia coli (E. coli) and gram positive Staphylococcus aureus (S. aureus) strains. The reduction in E. coli viability was 83% higher on HA-40 Wt % Fe3O4 composite after 4 h exposure to SMF as compared to nonexposed control. Interestingly, any statistically significant difference in ROS was not observed in bacterial growth medium after magnetic field exposure, indicating the absence of ROS enhancement due to magnetic field. Overall, this study illustrates significant role being played by magnetic substrate compositions towards bactericidal property than by magnetic field exposure alone. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 524-532, 2014.
Resumo:
Although HA is highly biocompatible, one of the major disadvantages of HA include the lack of antibacterial property. In an earlier study, we demonstrated the potential role of magnetic field stimulation on bactericidal property in vitro. Following this, it was hypothesized that antibacterial property can be realized if bacteria are grown on magnetic biocomposites in vitro. In addressing this issue, this study demonstrates the development of HA-Fe3O4-based magnetic substrate with multifunctional properties. For this purpose, HA-xFe(3)O(4) (x: 10, 20 and 40wt%) powder compositions were sintered using uniquely designed spark plasma sintering conditions (three stage sintering with final holding temperature of 1050 degrees C for 5min). A saturation magnetization of 24emu/g is measured with HA-40%Fe3O4. Importantly, all the HA-Fe3O4 composites demonstrated bactericidal property by rupturing the membrane of Escherichia coli bacteria, while supporting cell growth of metabolically active human fetal osteoblast cells over 8d culture. A systematic decrease in bacterial viability with Fe3O4 addition is consistent with a commensurate increase in reactive oxygen species (ROS).
Resumo:
Computational study of X-Ha <-C and C-Ha <-X hydrogen bonds in n-alkane-HX complexes (X =F,OH, alkane =propane, butane, pentane) has been carried out in this work. Ab initio and density functional theories were used for this study. For n-alkane-H2O complexes both Oa <-H-C and O-Ha <-C hydrogen bonded complex have been found, while for n-alkane-HF complexes, our attempt to optimize Fa <-H-C H-bond was not successful. Like most of the hydrogen bonded systems, strong correlation between binding energy and stretching frequency of H-F and O-H stretching mode was observed. The values of electron density and Laplacian of electron density are within the accepted range for hydrogen bonds. In all these cases, X-Ha <-C hydrogen bonds are found to be stronger than C-Ha <-X hydrogen bonds.