991 resultados para Jacobi polynomials
Resumo:
Multivariate orthogonal polynomials in D real dimensions are considered from the perspective of the Cholesky factorization of a moment matrix. The approach allows for the construction of corresponding multivariate orthogonal polynomials, associated second kind functions, Jacobi type matrices and associated three term relations and also Christoffel-Darboux formulae. The multivariate orthogonal polynomials, their second kind functions and the corresponding Christoffel-Darboux kernels are shown to be quasi-determinants as well as Schur complements of bordered truncations of the moment matrix; quasi-tau functions are introduced. It is proven that the second kind functions are multivariate Cauchy transforms of the multivariate orthogonal polynomials. Discrete and continuous deformations of the measure lead to Toda type integrable hierarchy, being the corresponding flows described through Lax and Zakharov-Shabat equations; bilinear equations are found. Varying size matrix nonlinear partial difference and differential equations of the 2D Toda lattice type are shown to be solved by matrix coefficients of the multivariate orthogonal polynomials. The discrete flows, which are shown to be connected with a Gauss-Borel factorization of the Jacobi type matrices and its quasi-determinants, lead to expressions for the multivariate orthogonal polynomials and their second kind functions in terms of shifted quasi-tau matrices, which generalize to the multidimensional realm, those that relate the Baker and adjoint Baker functions to ratios of Miwa shifted tau-functions in the 1D scenario. In this context, the multivariate extension of the elementary Darboux transformation is given in terms of quasi-determinants of matrices built up by the evaluation, at a poised set of nodes lying in an appropriate hyperplane in R^D, of the multivariate orthogonal polynomials. The multivariate Christoffel formula for the iteration of m elementary Darboux transformations is given as a quasi-determinant. It is shown, using congruences in the space of semi-infinite matrices, that the discrete and continuous flows are intimately connected and determine nonlinear partial difference-differential equations that involve only one site in the integrable lattice behaving as a Kadomstev-Petviashvili type system. Finally, a brief discussion of measures with a particular linear isometry invariance and some of its consequences for the corresponding multivariate polynomials is given. In particular, it is shown that the Toda times that preserve the invariance condition lay in a secant variety of the Veronese variety of the fixed point set of the linear isometry.
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
Grobner bases have been generalised to polynomials over a commutative ring A in several ways. Here we focus on strong Grobner bases, also known as D-bases. Several authors have shown that strong Grobner bases can be effectively constructed over a principal ideal domain. We show that this extends to any principal ideal ring. We characterise Grobner bases and strong Grobner bases when A is a principal ideal ring. We also give algorithms for computing Grobner bases and strong Grobner bases which generalise known algorithms to principal ideal rings. In particular, we give an algorithm for computing a strong Grobner basis over a finite-chain ring, for example a Galois ring.
Resumo:
Time-dependent wavepacket evolution techniques demand the action of the propagator, exp(-iHt/(h)over-bar), on a suitable initial wavepacket. When a complex absorbing potential is added to the Hamiltonian for combating unwanted reflection effects, polynomial expansions of the propagator are selected on their ability to cope with non-Hermiticity. An efficient subspace implementation of the Newton polynomial expansion scheme that requires fewer dense matrix-vector multiplications than its grid-based counterpart has been devised. Performance improvements are illustrated with some benchmark one and two-dimensional examples. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The known permutation behaviour of the Dickson polynomials of the second kind in characteristic 3 is expanded and simplified. (C) 2002 Elsevier Science (USA).
Resumo:
A new class of bilinear permutation polynomials was recently identified. In this note we determine the class of permutation polynomials which represents the functional inverse of the bilinear class.
Resumo:
In the framework of multibody dynamics, the path motion constraint enforces that a body follows a predefined curve being its rotations with respect to the curve moving frame also prescribed. The kinematic constraint formulation requires the evaluation of the fourth derivative of the curve with respect to its arc length. Regardless of the fact that higher order polynomials lead to unwanted curve oscillations, at least a fifth order polynomials is required to formulate this constraint. From the point of view of geometric control lower order polynomials are preferred. This work shows that for multibody dynamic formulations with dependent coordinates the use of cubic polynomials is possible, being the dynamic response similar to that obtained with higher order polynomials. The stabilization of the equations of motion, always required to control the constraint violations during long analysis periods due to the inherent numerical errors of the integration process, is enough to correct the error introduced by using a lower order polynomial interpolation and thus forfeiting the analytical requirement for higher order polynomials.
Resumo:
The theory of orthogonal polynomials of one real or complex variable is well established as well as its generalization for the multidimensional case. Hypercomplex function theory (or Clifford analysis) provides an alternative approach to deal with higher dimensions. In this context, we study systems of orthogonal polynomials of a hypercomplex variable with values in a Clifford algebra and prove some of their properties.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Habil.-Schr., 2014
Resumo:
The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomi- als for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a SzegÄo measure on the unit circumference is perturbed by an arbitrary measure inside the unit disk and an arbitrary Blaschke sequence of point masses outside the unit disk.
Resumo:
"Vegeu el resum a l'inici del document del fitxer ajunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."