971 resultados para Iterative closest point algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this contribution a novel iterative bit- and power allocation (IBPA) approach has been developed when transmitting a given bit/s/Hz data rate over a correlated frequency non-selective (4× 4) Multiple-Input MultipleOutput (MIMO) channel. The iterative resources allocation algorithm developed in this investigation is aimed at the achievement of the minimum bit-error rate (BER) in a correlated MIMO communication system. In order to achieve this goal, the available bits are iteratively allocated in the MIMO active layers which present the minimum transmit power requirement per time slot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 90C25, 68W10, 49M37.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative Monte Carlo algorithm for evaluating linear functionals of the solution of integral equations with polynomial non-linearity is proposed and studied. The method uses a simulation of branching stochastic processes. It is proved that the mathematical expectation of the introduced random variable is equal to a linear functional of the solution. The algorithm uses the so-called almost optimal density function. Numerical examples are considered. Parallel implementation of the algorithm is also realized using the package ATHAPASCAN as an environment for parallel realization.The computational results demonstrate high parallel efficiency of the presented algorithm and give a good solution when almost optimal density function is used as a transition density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fault resistance is a critical component of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies. This paper presents an iterative fault analysis algorithm for unbalanced three-phase distribution systems that considers a fault resistance estimate. The proposed algorithm is composed by two sub-routines, namely the fault resistance and the bus impedance. The fault resistance sub-routine, based on local fault records, estimates the fault resistance. The bus impedance sub-routine, based on the previously estimated fault resistance, estimates the system voltages and currents. Numeric simulations on the IEEE 37-bus distribution system demonstrate the algorithm`s robustness and potential for offline applications, providing additional fault information to Distribution Operation Centers and enhancing the system restoration process. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The well-known modified Garabedian-Mcfadden (MGM) method is an attractive alternative for aerodynamic inverse design, for its simplicity and effectiveness (P. Garabedian and G. Mcfadden, Design of supercritical swept wings, AIAA J. 20(3) (1982), 289-291; J.B. Malone, J. Vadyak, and L.N. Sankar, Inverse aerodynamic design method for aircraft components, J. Aircraft 24(2) (1987), 8-9; Santos, A hybrid optimization method for aerodynamic design of lifting surfaces, PhD Thesis, Georgia Institute of Technology, 1993). Owing to these characteristics, the method has been the subject of several authors over the years (G.S. Dulikravich and D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, in AIAA paper 99-0185, AIAA Aerospace Sciences Meeting, Reno, NV, January 1999; D.H. Silva and L.N. Sankar, An inverse method for the design of transonic wings, in 1992 Aerospace Design Conference, No. 92-1025 in proceedings, AIAA, Irvine, CA, February 1992, 1-11; W. Bartelheimer, An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings, AIAA Inc., 1995). More recently, a hybrid formulation and a multi-point algorithm were developed on the basis of the original MGM. This article discusses applications of those latest developments for airfoil and wing design. The test cases focus on wing-body aerodynamic interference and shock wave removal applications. The DLR-F6 geometry is picked as the baseline for the analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considerable research has indicated that children and their parents often demonstrate marked discrepancies in their reporting of anxiety-related phenomena. In such cases, the question arises as to whether children are capable of accurately reporting on their anxiety. In the present study, 50 children (aged 5 to 14 years) were asked to approach a large, German Shepherd dog. Prior to the task, both the mother and child independently predicted the closest point likely to be reached by the child and the degree of anxiety likely to be experienced. These predictions were then compared with the actual phenomena displayed by the child during the task. On the behavioural measure (closest step reached), both the child and mother demonstrated equivalent predictive accuracy. On the subjective measure (fear ratings) children were considerably more accurate than their mothers. The data were not influenced by gender, age, or clinical status. The results indicate the ability of children to accurately predict their anxious responses, and support the value of incorporating children's self-reports in the assessment of emotional disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aquest projecte es basarà en reconstruir una imatge 3D gran a partir d’una seqüència d’imatges 2D capturades per una càmera. Ens centrem en l’estudi de les bases matemàtiques de la visió per computador així com en diferents mètodes emprats en la reconstrucció 3D d’imatges. Per portar a terme aquest estudi s’utilitza la plataforma de desenvolupament MatLab ja que permet tractar operacions matemàtiques, imatges i matrius de gran tamany amb molta senzillesa, rapidesa i eficiència, per aquesta raó s’usa en moltes recerques sobre aquest tema. El projecte aprofundeix en el tema descrit anteriorment estudiant i implementant un mètode que consisteix en aplicar Structure From Motion (SFM) a pocs frames seguits obtinguts d’una seqüència d’imatges 2D per crear una reconstrucció 3D. Quan s’han creat dues reconstruccions 3D consecutives i fent servir un frame com a mínim en comú entre elles, s’aplica un mètode de registre d’estructures 3D, l’Iterative Closest Point (ICP), per crear una reconstrucció 3D més gran a través d’unir les diferents reconstruccions obtingudes a partir de SfM. El mètode consisteix en anar repetint aquestes operacions fins al final dels frames per poder aconseguir una reconstrucció 3D més gran que les petites imatges que s’aconsegueixen a través de SfM. A la Figura 1 es pot veure un esquema del procés que es segueix. Per avaluar el comportament del mètode, utilitzem un conjunt de seqüències sintètiques i un conjunt de seqüències reals obtingudes a partir d’una càmera. L’objectiu final d’aquest projecte és construir una nova toolbox de MatLab amb tots els mètodes per crear reconstruccions 3D grans per tal que sigui possible tractar amb facilitat aquest problema i seguir-lo desenvolupant en un futur

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In models where privately informed agents interact, agents may need to formhigher order expectations, i.e. expectations of other agents' expectations. This paper develops a tractable framework for solving and analyzing linear dynamic rational expectationsmodels in which privately informed agents form higher order expectations. The frameworkis used to demonstrate that the well-known problem of the infinite regress of expectationsidentified by Townsend (1983) can be approximated to an arbitrary accuracy with a finitedimensional representation under quite general conditions. The paper is constructive andpresents a fixed point algorithm for finding an accurate solution and provides weak conditions that ensure that a fixed point exists. To help intuition, Singleton's (1987) asset pricingmodel with disparately informed traders is used as a vehicle for the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le développement d’un médicament est non seulement complexe mais les retours sur investissment ne sont pas toujours ceux voulus ou anticipés. Plusieurs médicaments échouent encore en Phase III même avec les progrès technologiques réalisés au niveau de plusieurs aspects du développement du médicament. Ceci se traduit en un nombre décroissant de médicaments qui sont commercialisés. Il faut donc améliorer le processus traditionnel de développement des médicaments afin de faciliter la disponibilité de nouveaux produits aux patients qui en ont besoin. Le but de cette recherche était d’explorer et de proposer des changements au processus de développement du médicament en utilisant les principes de la modélisation avancée et des simulations d’essais cliniques. Dans le premier volet de cette recherche, de nouveaux algorithmes disponibles dans le logiciel ADAPT 5® ont été comparés avec d’autres algorithmes déjà disponibles afin de déterminer leurs avantages et leurs faiblesses. Les deux nouveaux algorithmes vérifiés sont l’itératif à deux étapes (ITS) et le maximum de vraisemblance avec maximisation de l’espérance (MLEM). Les résultats de nos recherche ont démontré que MLEM était supérieur à ITS. La méthode MLEM était comparable à l’algorithme d’estimation conditionnelle de premier ordre (FOCE) disponible dans le logiciel NONMEM® avec moins de problèmes de rétrécissement pour les estimés de variances. Donc, ces nouveaux algorithmes ont été utilisés pour la recherche présentée dans cette thèse. Durant le processus de développement d’un médicament, afin que les paramètres pharmacocinétiques calculés de façon noncompartimentale soient adéquats, il faut que la demi-vie terminale soit bien établie. Des études pharmacocinétiques bien conçues et bien analysées sont essentielles durant le développement des médicaments surtout pour les soumissions de produits génériques et supergénériques (une formulation dont l'ingrédient actif est le même que celui du médicament de marque, mais dont le profil de libération du médicament est différent de celui-ci) car elles sont souvent les seules études essentielles nécessaires afin de décider si un produit peut être commercialisé ou non. Donc, le deuxième volet de la recherche visait à évaluer si les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte pour un individu pouvaient avoir une incidence sur les conclusions d’une étude de bioéquivalence et s’ils devaient être soustraits d’analyses statistiques. Les résultats ont démontré que les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte influençaient de façon négative les résultats si ceux-ci étaient maintenus dans l’analyse de variance. Donc, le paramètre de surface sous la courbe à l’infini pour ces sujets devrait être enlevé de l’analyse statistique et des directives à cet effet sont nécessaires a priori. Les études finales de pharmacocinétique nécessaires dans le cadre du développement d’un médicament devraient donc suivre cette recommandation afin que les bonnes décisions soient prises sur un produit. Ces informations ont été utilisées dans le cadre des simulations d’essais cliniques qui ont été réalisées durant la recherche présentée dans cette thèse afin de s’assurer d’obtenir les conclusions les plus probables. Dans le dernier volet de cette thèse, des simulations d’essais cliniques ont amélioré le processus du développement clinique d’un médicament. Les résultats d’une étude clinique pilote pour un supergénérique en voie de développement semblaient très encourageants. Cependant, certaines questions ont été soulevées par rapport aux résultats et il fallait déterminer si le produit test et référence seraient équivalents lors des études finales entreprises à jeun et en mangeant, et ce, après une dose unique et des doses répétées. Des simulations d’essais cliniques ont été entreprises pour résoudre certaines questions soulevées par l’étude pilote et ces simulations suggéraient que la nouvelle formulation ne rencontrerait pas les critères d’équivalence lors des études finales. Ces simulations ont aussi aidé à déterminer quelles modifications à la nouvelle formulation étaient nécessaires afin d’améliorer les chances de rencontrer les critères d’équivalence. Cette recherche a apporté des solutions afin d’améliorer différents aspects du processus du développement d’un médicament. Particulièrement, les simulations d’essais cliniques ont réduit le nombre d’études nécessaires pour le développement du supergénérique, le nombre de sujets exposés inutilement au médicament, et les coûts de développement. Enfin, elles nous ont permis d’établir de nouveaux critères d’exclusion pour des analyses statistiques de bioéquivalence. La recherche présentée dans cette thèse est de suggérer des améliorations au processus du développement d’un médicament en évaluant de nouveaux algorithmes pour des analyses compartimentales, en établissant des critères d’exclusion de paramètres pharmacocinétiques (PK) pour certaines analyses et en démontrant comment les simulations d’essais cliniques sont utiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 10% of children enrolled in schools. There is no cure for learning disabilities and they are lifelong. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. Just as there are many different types of LDs, there are a variety of tests that may be done to pinpoint the problem The information gained from an evaluation is crucial for finding out how the parents and the school authorities can provide the best possible learning environment for child. This paper proposes a new approach in artificial neural network (ANN) for identifying LD in children at early stages so as to solve the problems faced by them and to get the benefits to the students, their parents and school authorities. In this study, we propose a closest fit algorithm data preprocessing with ANN classification to handle missing attribute values. This algorithm imputes the missing values in the preprocessing stage. Ignoring of missing attribute values is a common trend in all classifying algorithms. But, in this paper, we use an algorithm in a systematic approach for classification, which gives a satisfactory result in the prediction of LD. It acts as a tool for predicting the LD accurately, and good information of the child is made available to the concerned

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning Disability (LD) is a neurological condition that affects a child’s brain and impairs his ability to carry out one or many specific tasks. LD affects about 15 % of children enrolled in schools. The prediction of LD is a vital and intricate job. The aim of this paper is to design an effective and powerful tool, using the two intelligent methods viz., Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, for measuring the percentage of LD that affected in school-age children. In this study, we are proposing some soft computing methods in data preprocessing for improving the accuracy of the tool as well as the classifier. The data preprocessing is performed through Principal Component Analysis for attribute reduction and closest fit algorithm is used for imputing missing values. The main idea in developing the LD prediction tool is not only to predict the LD present in children but also to measure its percentage along with its class like low or minor or major. The system is implemented in Mathworks Software MatLab 7.10. The results obtained from this study have illustrated that the designed prediction system or tool is capable of measuring the LD effectively