915 resultados para Iron biogeochemistry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of particle abrasive sizes on wear resistance of mottled cast iron with different retained austenite contents were studied. Abrasive wear tests using a pin test on alumina paper were carried out, using abrasive sizes between 16 mu m and 192 mu m. Retained austenite content of the matrix was determined by X-ray diffraction. The wear surface of samples and the alumina paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results show that at lower abrasive sizes the mass loss was similar for the iron with different austenite contents. However, at higher abrasive sizes the samples with higher retained austenite content presented higher abrasion resistance. For lower abrasive sizes tested, samples with higher and lower retained austenite content both presented microcutting. On the other hand, the main wear micromechanism for the samples with higher retained austenite content and higher abrasive sizes was microploughing. The samples with lower retained austenite content presented microcutting and wedge formation at higher abrasive sizes. Higher abrasive size induced more microcutting in samples with lower retained austenite. The iron with lower retained austenite content presented wider grooves for the different abrasive sizes measured. SEM on the abrasive paper used on samples with higher retained austenite showed continuous and discontinuous microchips and the samples with lower retained austenite showed discontinuous microchips at 66 and 141 mu m. This research demonstrates the relation between abrasive size, wear resistance, groove width and wear micromechanism for mottled cast iron with different retained austenite contents. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abrasive wear resistance of white cast iron was studied. The iron was solidified using two solidification rates of 1.5 and 15 degrees C/s. Mass loss was evaluated with tests of the type pin on abrasive disc using alumina of different sizes. Two matrices were tested: one predominantly austenitic and the other predominantly martensitic, containing M(3)C carbides. Samples with cooling rate of 15 degrees C/s showed higher hardness and more refined microstructure compared with those solidified at 1.5 degrees C/s. During the test, the movement of successive abrasives gave rise to the strain hardening of the austenite phase, leading to the attainment of similar levels of surface hardness, which explains why the wear rate showed no difference compared to the austenite samples with different solidification rates. For the austenitic matrix the wear rate seems to depend on the hardness of the worn surface and not on the hardness of the material without deformation. The austenitic samples showed cracking and fracture of M(3)C carbides. For the predominantly martensitic matrix, the wear rate was higher at the solidification rate of 1.5 degrees C/s, for grain size of 66 and 93 mu m. Higher abrasive sizes were found to produce greater penetration and strain hardening of austenitic matrices. However, martensitic iron produces more microcutting, increasing the wear rate of the material. The analysis of the worn surface by scanning electron microscopy indicated abrasive wear mechanisms such as: microcutting, microfatigue and microploughing. Yet, for the iron of austenitic matrix, the microploughing mechanism was more severe. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study four irons were casted with different chromium and vanadium contents: 2.66% Cr, 5.01% Cr, 2.51% V and 5.19% V. Their microstructure is composed of: ledeburite, graphite and M(3)C carbides (cementite). Pin-abrasion tests were carried out using fixed alumina abrasive grains at different loads: 1, 2, 4.6 and 10 N. The wear surface and the abrasive paper were examined by scanning electron microscopy for identifying the wear micromechanism. The results reveal that the mass loss increased with the load increase, and the effect of the percentage of chromium on mass loss is inverted when the load is increased from 4.6 to 10 N; for 4.6 N the mass loss decreased when the chromium percentage was increased from 2.66% to 5.01%. Nevertheless, for 10 N the mass loss increased when the chromium percentage was increased. The worn surfaces of the materials tested at 1 N show microcutting caused by the abrasive tip that produces continuous microchips. The worn surfaces and the abrasive paper tested at 10 N show continuous microchips and brittle debris. The results show that high pressures produce a brittle wear mechanism and low pressures produce a more ductile wear micromechanism, for this, the applied pressure defines the dependence between the wear resistance and wear micromechanism. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to investigate the reduction of chromium from a quaternary slag by carbon dissolved in liquid steel. Laboratory scale experiments were conducted to study the reduction of chromium oxides in the slag by carbon dissolved in the melt. These experiments were made under different conditions of slag basicity and amount of added carbon. Thermodynamic calculations based on Double Sublattice model were applied using the commercial software Thermo-Calc, with the IRSID database. The results obtained showed good correlation with practical and calculated results, making it possible to predict equilibrium conditions of the system and to determine the activities of chromium oxides in the slag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study the reaction rate and the morphology of intermediate reaction products during iron ore reduction when iron ore and carbonaceous materials are agglomerated together with or without Portland cement. The reaction was performed at high temperatures, and used small size samples in order to minimise heat transfer constraints. Coke breeze and pure graphite were the carbonaceous materials employed. Portland cement was applied as a binder, and pellet diameters were in the range 5.6-6.5 mm. The experimental technique involved the measurement of the pellet weight loss, as well as the interruption of the reaction at different stages, in order to submit the partially reduced pellet to scanning electron microscopy. The experimental temperature was in the range 1423-1623 K, and the total reaction time varied from 240 to 1200 s. It was observed that above 1523 K the formation of liquid slag occurred inside the pellets, which partially dissolved iron oxides. The apparent activation energies obtained were 255 kJ mol(-1) for coke breeze containing pellets, and 230 kJ mol(-1) for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cluster Variation Method (CVM), introduced over 50 years ago by Prof. Dr. Ryoichi Kikuchi, is applied to the thermodynamic modeling of the BCC Cr-Fe system in the irregular tetrahedron approximation, using experimental thermochemical data as initial input for accessing the model parameters. The results are checked against independent data on the low-temperature miscibility gap, using increasingly accurate thermodynamic models, first by the inclusion of the magnetic degrees of freedom of iron and then also by the inclusion of the magnetic degrees of freedom of chromium. It is shown that a reasonably accurate description of the phase diagram at the iron-rich side (i.e. the miscibility gap borders and the Curie line) is obtained, but only at expense of the agreement with the above mentioned thermochemical data. Reasons for these inconsistencies are discussed, especially with regard to the need of introducing vibrational degrees of freedom in the CVM model. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before one models the effect of plastic deformation on magnetoacoustic emission (MAE), one must first treat non-180 degrees domain wall motion. In this paper, we take the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model and modify it to treat non-180 degrees wall motion. We then insert a modified stress-dependent Jiles-Atherton model, which treats plastic deformation, into the modified ABBM model to treat MAE and magnetic Barkhausen noise (HBN). In fitting the dependence of these quantities on plastic deformation, we apply a model for when deformation gets into the stage where dislocation tangles are formed, noting two chief effects, one due to increased density of emission centers owing to increased dislocation density, and the other due to a more gentle increase in the residual stress in the vicinity of the dislocation tangles as deformation is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of magnetoacoustic emission (MAE) has been ascribed usually to one of two origins: either (1) motion of non-180 degrees domain walls or (2) creation or annihilation of domains. In this paper, we present strong evidence for the argument that the only origin for MAE is motion of non-180 degrees domain walls. The proof is evident as a result of measurements of zero MAE for a wide range of stress in the isotropic zero magnetostrictive polycrystalline alloy of iron with 6.5% silicon. We also explain why it was that the alternative origin was proposed and how the data in that same experiment can be reinterpreted to be consistent with the non-180 degrees wall motion origin. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work analyses pellets prepared with iron ore that has been mechanically activated by high energy ball milling. Pellet feed iron ore was submitted to high-energy ball milling for 60 minutes, and the resulting material was analysed through measurements of particle size and specific surface area, as well as X-ray diffraction. Pellets were prepared from this material. The pellets were heated at temperatures ranging from 1000 to 1250 degrees C in a muffle furnace, and submitted to the maximum temperature during 10 - 12 minutes. The samples were then tested regarding crushing strength, densification and porosity, and were examined in a scanning electronic microscope. The results were compared to those obtained with similar samples made from non-milled pellet feed. It has been shown that through high-energy ball milling of iron ore it is possible to achieve pellets presenting high densification and compressive strength at firing temperatures lower than the usual ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial bentonite (BFN) and organoclay (WS35), as well as iron oxide/clay composite (Mag_BFN) and iron/oxide organoclay composite (Mag_S35) were prepared for toluene and naphthalene sorption. Mag_BFN and Mag_S35 were obtained, respectively, by the precipitation of iron oxide hydrates onto sodium BFN and S35 clay particles. The materials were characterized by powder X-ray diffraction (XRD), X-ray Fluorescence (XRF), and TG and DTA. From XRF results and TG data on calcined mass basis, a quantitative method was developed to estimate the iron compound contents of the composites, as well as the organic matter content present in WS35 and Mag_S35.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermoelastic properties of ferropericlase Mg(1-x)Fe(x)O (x = 0.1875) throughout the iron high-to-low spin cross-over have been investigated by first principles at Earth`s lower mantle conditions. This cross-over has important consequences for elasticity such as an anomalous bulk modulus (K(S)) reduction. At room temperature the anomaly is somewhat sharp in pressure but broadens with increasing temperature. Along a typical geotherm it occurs across most of the lower mantle with a more significant K(S) reduction at approximate to 1,400-1,600 km depth. This anomaly might also cause a reduction in the effective activation energy for diffusion creep and lead to a viscosity minimum in the mid-lower mantle, in apparent agreement with results from inversion of data related with mantle convection and postglacial rebound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial community structure in saltmarsh soils is stratified by depth and availability of electron acceptors for respiration. However, the majority of the microbial species that are involved in the biogeochemical transformations of iron (Fe) and sulfur (S) in such environments are not known. Here we examined the structure of bacterial communities in a high saltmarsh soil profile and discuss their potential relationship with the geochemistry of Fe and S. Our data showed that the soil horizons Ag (oxic-suboxic), Bg (suboxic), Cri (anoxic with low concentration of pyrite Fe) and Cr-2 (anoxic with high concentrations of pyrite Fe) have distinct geochemical and microbiological characteristics. In general, total S concentration increased with depth and was correlated with the presence of pyrite Fe. Soluble + exchangable-Fe, pyrite Fe and acid volatile sulfide Fe concentrations also increased with depth, whereas ascorbate extractable-Fe concentrations decreased. The occurrence of reduced forms of Fe in the horizon Ag and oxidized Fe in horizon Cr-2 suggests that the typical redox zonation, common to several marine sediments, does not occur in the saltmarsh soil profile studied. Overall, the bacterial community structure in the horizon Ag and Cr-2 shared low levels of similarity, as compared to their adjacent horizons, Bg and Cr-1, respectively. The phylogenetic analyses of bacterial 16S rRNA gene sequences from clone libraries showed that the predominant phylotypes in horizon Ag were related to Alphaproteobacteria and Bacteroidetes. In contrast, the most abundant phylotypes in horizon Cr-2 were related to Deltaproteo-bacteria, Chloroflexi, Deferribacteres and Nitrospira. The high frequency of sequences with low levels of similarity to known bacterial species in horizons Ag and Cr-2 indicates that the bacterial communities in both horizons are dominated by novel bacterial species. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feeding mineral-deficient diets enhances absorptive efficiency as an attempt of the body to compensate for the lack of an essential nutrient. Under certain circumstances, it does not succeed, and nutritional deficiency is produced Our hypothesis was that mulin-type fructans (ITF), which arc known to affect mineral absorption, could increase Ca and Fe bioavailability in Ca- and Fe-deficient rats. Male Wistar rats (n = 48, 4 weeks old) were assigned to I of 8 groups derived from 2 x 2 x 2 factorial design with 2 levels of added Fe (0 and 35 mg/kg), Ca (0 and 5 g/kg), and ITF (0 and 100 g/kg) for 33 days. The Fe status (hemoglobin, serum Fe, total Fe-binding capacity, transferrin saturation, liver minerals) was evaluated. Tibia minerals (Ca, Mg, and Zn), bone strength, and histomorphometry were determined In nondeficient rats, ITF supplementation did not affect Fe status or organ minerals, with the exception of tibia Mg Moreover, ITF improved bone resilience and led to a reduction in eroded surface per body surface and number of osteoclasts per area In Ca-deficient rats, ITF increased liver (Fe and Zn) and tibia (Zn) mineral levels but impaired tibia Mg, yield load, and resilience. In conclusion, ITF worsened the tibia Mg levels and elastic properties when supplemented in Ca-deficient diets In contrast, although bone Ca was not affected in nondeficient rats under the present experimental conditions, bone quality improved, as demonstrated by a moderate reduction in femur osteoclast resorption and significant increases in tibia Mg content and elasticity. (C) 2009 Elsevier Inc. All rights reserved.