928 resultados para Iron,Thymine-acetic acid,hydrogen peroxide,alcohol oxidation,olefin halogenation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A solid catalyst manganese pyrophosphate based on non-sieves to oxidize benzene to phenol with oxidant hydrogen peroxide has shown good conversion with good selectivity in CH3CN at 65 degrees C investigating water contact angle data of three manganese salts, it is found manganese pyrophosphate has certain repulsive water character. It is further to be confirmed by benzene and phenol adsorption experiments onto catalyst surface by GC. With benzene/H2O2 ratio of 1, the benzene conversion of 13.8% with phenol selectivity of 85.0% was achieved. It is noteworthy that no any products are obtained using manganese pyrophosphate as catalyst in the oxidation of phenol in CH3CN solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conductive alpha (2)-K7P2W17VO62/graphite/organoceramic composite was prepared by dispersing alpha (2)-K7P2W17VO62 and graphite powder in a propyltrimethoxysilane-based sol-gel solution; it was used as the electrode material for an amperometric hydrogen peroxide sensor. The modified electrode had a homogeneous mirror-like surface and showed well defined cyclic voltammograms. Square-wave voltammetry was employed to study the pH-dependent electrochemical behavior of c alpha (2)-K7P2W17VO62 doped in the graphite organoceramic matrix, and the experiment showed that both protons and sodium cations participated in the odor process. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The sensor can be renewed easily in a repeatable manner by a mechanical polishing step and has a long operational lifetime. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of hydrogen peroxide with cytochrome c makes them coupled to lead to the hydroxylation of 4-nitrophenol. In situ electrochemical probe was used to detect the hydroxylation of 4-nitrophenol, which can avoid the tedious extraction procedure, the loss of the active species and the interference of some colored substances in the detection of 4-nitrocatechol by spectroscopic method. The hydroxyl radical scavengers mannitol and sodium benzoate did not eliminate hydroxylation, but the inhibitory effect of uric acid on the hydroxylation lead to the formation of the ferryl species of the protein during the reaction. These studies suggest that the electrochemical probe might efficiently detect the trace 4-nitrocatechol from the onset of the hydroxylation reaction and thus provides a more sensitive tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With addition of methanol in acetic acid solvent, m-phenoxytoluene could be oxidized to m-phenoxybenzaldehyde selectively by a cobalt bromide catalyst. Paratemters such as the ratio of Co/Br and the reaction time of m-phenoxytoluene oxidation as well as visible spectra of cobalt bromide in acetic acid/methanol solvents, were also investigated. Addition of methanol caused the oxidation of aldehydes to proceed more slowly than it did solely in acetic acid solvent. The decrease of cobaltous-multibromides in acetic acid/methanol solvents was responsible for the improvement in the selective oxidation of m-phenoxytoluene. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pd-supported on WO3-ZrO2 (W/Zr atomic ratio=0.2) calcined at 1073 K was found to be highly active and selective for gas-phase oxidation of ethylene to acetic acid in the presence of water at 423 K and 0.6 MPa. Contact time dependence demonstrated that acetic acid is formed via acetaldehyde formed by a Wacker-type reaction, not through ethanol by hydration of ethylene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyanobacterial toxins present in drinking water sources pose a considerable threat to human health. Conventional water treatment systems have proven unreliable for the removal of these toxins and hence new techniques have been investigated. Previous work has shown that TiO2 photocatalysis effectively destroys microcystin-LR in aqueous solutions, however non-toxic by-products were detected. It has been shown that photocatalytic reactions are enhanced by utilisation of alternative electron acceptors. We report here enhanced photocatalytic degradation of microcystin-LR following the addition of hydrogen peroxide to the system. It was also found that hydrogen peroxide with UV illumination alone was capable of decomposing microcystin-LR although at a much slower rate than found for TiO2. No HPLC detectable by-products were found when the TiO2/UV/H2O2 system was used indicating that this method is more effective than TiO2/UV alone. Results however indicated that only 18% mineralisation occurred with the TiO2/UV/H2O2 system and hence undetectable by-products must still be present. At higher concentrations hydrogen peroxide was found to compete with microcystin-LR for surface sites on the catalyst but at lower peroxide concentrations this competitive adsorption was not observed. Toxicity studies showed that both in the presence and absence of H2O2 the microcystin solutions were detoxified. These findings suggest that hydrogen peroxide greatly enhances the photocatalytic oxidation of microcystin-LR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligated Pd(II) complexes have been studied for the catalytic oxidation of terminal olefins to their corresponding methyl ketones. The method uses aqueous hydrogen peroxide as the terminal oxidant; a sustainable and readily accessible oxidant. The choice of ligand, counterion and solvent all have a significant effect on catalytic performance and we were able to develop systems which perform well for these challenging oxidations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activities of perlatolic acid (1), atranorin (2), and lecanoric acid (3) and their derivatives, such as orsellinates and β-methyl orsellinates obtained by alcoholysis, were assessed for stimulation of the release of hydrogen peroxide and nitric oxide in cultures of peritoneal macrophage cells from mice. The hydrogen peroxide production was estimated by oxidation of phenol red, while the Griess reagent was used to determine the nitric oxide production. 1 and 4-methoxy-ethyl orsellinate (XVII) were the compounds that induced the greatest release of H 2O 2, whereas n-pentyl orsellinate (IV), iso-propyl orsellinate (V), sec-butyl orsellinate (VI), and XVII induced a small release of NO. These results indicate that lichen products and their derivatives have potential immune-modulating activities. © 2009 Verlag der Zeitschrift für Naturforschung, Tübingen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen peroxide is a powerful oxidant that finds application in several areas, but most particularly in the treatment of industrial wastewaters. The aim of the present study was to investigate the effects of applied potential and electrolyte flow conditions on the in situ generation of hydrogen peroxide in an electrochemical flow-by reactor with a gas diffusion electrode (GDE). The electrolyses were performed in an aqueous acidic medium using a GDE constructed with conductive black graphite and polytetrafluoroethylene (80:20 w/w). Under laminar flow conditions (flow rate = 50 L/h), hydrogen peroxide was formed in a maximum yield of 414 mg/L after 2 h at -2.25 V vs Pt //Ag/AgCl (global rate constant = 3.1 mg/(L min); energy consumption = 22.1 kWh/kg). Under turbulent flow (300 L/h), the maximum yield obtained was 294 mg/L after 2 h at -1.75 V vs Pt//Ag/AgCl (global rate constant = 2.5 mg/ (L min); energy consumption = 30.1 kWh/kg).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the pathogenesis-related generation of H2O2 using the microscopic detection of 3,3-diaminobenzidine polymerization in near-isogenic barley (Hordeum vulgare L.) lines carrying different powdery mildew (Blumeria graminis f.sp. hordei) resistance genes, and in a line expressing chemically activated resistance after treatment with 2,6-dichloroisonicotinic acid (DCINA). Hypersensitive cell death in Mla12 and Mlg genotypes or after chemical activation by DCINA was associated with H2O2 accumulation throughout attacked cells. Formation of cell wall appositions (papillae) mediated in Mlg and mlo5 genotypes and in DCINA-activated plants was paralleled by H2O2 accumulation in effective papillae and in cytosolic vesicles of up to 2 μm in diameter near the papillae. H2O2 was not detected in ineffective papillae of cells that had been successfully penetrated by the fungus. These findings support the hypothesis that H2O2 may play a substantial role in plant defense against the powdery mildew fungus. We did not detect any accumulation of salicylic acid in primary leaves after inoculation of the different barley genotypes, indicating that these defense responses neither relied on nor provoked salicylic acid accumulation in barley.