993 resultados para Iron, Aluminium, Spectrophotometry, Kinetics, Chemometrics-PLS
Resumo:
Deep marine successions of early Campanian age from DSDP site 516F drilled at low paleolatitudes in the South Atlantic reveal distinct sub-Milankovitch variability in addition to precession and eccentricity related variations. Elemental abundance ratios point to a similar 5 climatic origin for these variations and exclude a quadripartite structure - as observed in the Mediterranean Neogene - of the precession related cycles as an explanation for the inferred semi-precession cyclicity in MS. However, the semi-precession cycle itself is likely an artifact, reflecting the first harmonic of the precession signal. The sub-Milankovitch variability is best approximated by a ~ 7 kyr cycle as shown by 10 spectral analysis and bandpass filtering. The presence of sub-Milankovitch cycles with a period similar to that of Heinrich events of the last glacial cycle is consistent with linking the latter to low-latitude climate change caused by a non-linear response to precession induced variations in insolation between the tropics.
Resumo:
In 2004, Integrated Ocean Drilling Program Expedition 302 (Arctic Coring Expedition, ACEX) to the Lomonosov Ridge drilled the first Central Arctic Ocean sediment record reaching the uppermost Cretaceous (~430 m composite depth). While the Neogene part of the record is characterized by grayish-yellowish siliciclastic material, the Paleogene part is dominated by biosiliceous black shale-type sediments. The lithological transition between Paleogene and Neogene deposits was initially interpreted as a single sedimentological unconformity (hiatus) of ~26 Ma duration, separating Eocene from Miocene strata. More recently, however, continuous sedimentation on Lomonosov Ridge throughout the Cenozoic was proclaimed, questioning the existence of a hiatus. In this context, we studied the elemental and mineralogical sediment composition around the Paleogene-Neogene transition at high resolution to reconstruct variations in the depositional regime (e.g. wave/current activity, detrital provenance, and bottom water redox conditions). Already below the hiatus, mineralogical and geochemical proxies imply drastic changes in sediment provenance and/or weathering intensity in the hinterland, and point to the existence of another, earlier gap in the sediment record. The sediments directly overlying the hiatus (the Zebra interval) are characterized by pronounced and abrupt compositional changes that suggest repeated erosion and re-deposition of material. Regarding redox conditions, euxinic bottom waters prevailed at the Eocene Lomonosov Ridge, and became even more severe directly before the hiatus. With detrital sedimentation rates decreasing, authigenic trace metals were highly enriched in the sediment. This continuous authigenic trace metal enrichment under persistent euxinia implies that the Arctic trace metal pool was renewed continuously by water mass exchange with the world ocean, so the Eocene Arctic Ocean was not fully restricted. Above the hiatus, extreme positive Ce anomalies are clear signs of a periodically well-oxygenated water column, but redox conditions were highly variable during deposition of the Zebra interval. Significant Mn enrichments only occur above the Zebra interval, documenting the Miocene establishment of stable oxic conditions in the Arctic Ocean. In summary, extreme and abrupt changes in geochemistry and mineralogy across the studied sediment section do not suggest continuous sedimentation at the Lomonosov Ridge around the Eocene-Miocene transition, but imply repeated periods of very low sedimentation rates and/or erosion.
Resumo:
Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.
Resumo:
Studies of interstitial waters obtained from DSDP Leg 64 drill sites in the Gulf of California have revealed information both on early diagenetic processes in the sediments resulting from the breakdown of organic matter and on hydrothermal interactions between sediments and hot doleritic sill intrusions into the sediments. In all the sites drilled sulfate reduction occurred as a result of rapid sediment accumulation rates and of relatively high organic carbon contents; in most sites methane production occurred after sulfate depletion. Associated with this methane production are high values of alkalinity and high concentrations of dissolved ammonia, which causes ion exchange processes with the solid phases leading to intermediate maxima in Mg++, K+, Rb+, and Sr++(?). Though this phenomenon is common in Leg 64 drill sites, these concentration reversals had been noticed previously only in Site 262 (Timor Trough) and Site 440 (Japan Trench). Penetrating, hot dolerite sills have led to substantial hydrothermal alteration in sediments at sites drilled in the Guaymas Basin. Site 477 is an active hydrothermal system in which the pore-water chemistry typically shows depletions in sulfate and magnesium and large increases in lithium, potassium, rubidium, calcium, strontium, and chloride. Strontium isotope data also indicate large contributions of volcanic matter and basalt to the pore-water strontium concentrations. At Sites 478 and 481 dolerite sill intrusions have cooled to ambient temperatures but interstitial water concentrations of Li+, Rb+, Sr++ , and Cl- show the gradual decay of a hydrothermal signal that must have been similar to the interstitial water chemistry at Site 477 at the time of sill intrusion. Studies of oxygen isotopes of the interstitial waters at Site 481 indicate positive values of d18O (SMOW) as a result of high-temperature alteration reactions occurring in the sills and the surrounding sediments. A minimum in dissolved chloride at about 100-125 meters sub-bottom at Sites 478, 481, and particularly Site 479 records a possible paleosalinity signal, associated with an event that substantially lowered salinities in the inner parts of the Gulf of California during Quaternary time.
Resumo:
The tops of the Emperor chain guyots, which were drilled during Leg 55, lie above the carbonate compensation depth (CCD), as well as above the foraminiferal dissolution level, i.e., lysocline. They are therefore the sites of accumulation of pelagic foraminiferal nannofossil ooze, such accumulation having taken place here since the moment of the seamounts' subsidence and the termination of shallow-water carbonate accumulation which was formerly developed on their tops. But the existence of strong bottom currents over the tops and slope scarps limits, and at some places reduces to zero, sedimentation of any pelagic particles. At such areas there are formed thick iron-manganese crusts. The seamounts drilled on Leg 55 are within the northern (Boreal) belt of biogenic silica accumulation, which existed in the northern Pacific throughout the Neogene. This circumstance presupposes a possible enrichment of the relatively fine-grained sediments with biogenic silica - diatoms and radiolarians.
Resumo:
Sedimentary cover on the bottom of the Northwest Atlantic Ocean is underlain by Late Jurassic - Cretaceous tholeiite-basalt formation. It consists of come sedimentary formations with different lithologic features and age. Their composition, stratigraphic position and, distribution are described on materials of deep-sea drilling. Mineralogical and geochemical studies of DSDP Leg 43 and Leg 44 holes lead to new ideas about composition and genesis of some sediment types of and their associations. High metal contents in the chalk formation of black clays on the Bermuda Rise probably result from exhalations. Connection of red-colored and speckled deposits with hiatuses in sedimentation is shown. Main stages of geological history of the North American Basin are reflected in accumulation of the followed formations: ancient carbonate formation (Late Jurassic - Early Cretaceous), formation of black clays rich in organic matter (Cretaceous), formation of speckled clays (Late Cretaceous), siliceous-clayey turbidite formation (Eocene), hemipelagic and pelagic clayey formation (Neogene), and terrigenous turbidite formation (Pleistocene).
Resumo:
Recent rapid climate warming at the western Antarctic Peninsula (WAP) results in elevated glacial melting, enhanced sedimentary run-off, increased turbidity and impact of ice-scouring in shallow coastal areas. Discharge of mineral suspension from volcanic bedrock ablation and chronic physical disturbance is expected to influence sessile filter feeders such as the Antarctic soft shell clam Laternula elliptica ( King and Broderip, 1832). We investigated effects of sedimentary run-off on the accumulation of trace metals, and together with physical disturbance, the cumulative effect on oxidative stress parameters in younger and older L. elliptica from two stations in Potter Cove (King George Island, Antarctica) which are distinctly impacted by turbidity and ice-scouring. Fe, Mn, Sr, V and Zn concentrations were slightly higher in sediments of the station receiving more sediment run-off, but not enriched in bivalves of this station. The only element that increased in bivalves experimentally exposed to sediment suspension for 28 days was Mn. Concentration of the waste accumulation biomarker lipofuscin in nervous tissue was higher in L. elliptica from the "exposed" compared to the "less exposed" site, whereas protein carbonyl levels in bivalve mantle tissue were higher at the less sediment impacted site. Tissue metal content and lipofuscin in nervous tissue were generally higher in older compared to younger individuals from both field stations. We conclude that elevated sediment ablation does not per se result in higher metal accumulation in L. elliptica. Instead of direct absorbance from sediment particles, metal accumulation in gills seems to indicate uptake of compounds dissolved in the water column, whereas metals in digestive gland appear to originate from enriched planktonic or detritic food. Accumulation of cellular waste products and potentially reactive metals over lifetime presumably alters L. elliptica physiological performance with age and may contribute to higher stress susceptibility in older animals.
Resumo:
The book is devoted to investigations of benthic fauna and geology of the Southern Atlantic Ocean. These works have been carried out in terms of exploring biological structure of the ocean and are of great importance for development of this fundamental problem. They are based on material collected during Cruise 43 of R/V Akademik Kurchatov in 1985-1986 and Cruise 43 of R/V Dmitry Mendeleev in 1989. Problems of quantitative distribution, group composition and trophic structure of benthos in the Southern Scotia Sea, along the east-west Transatlantic section along 31°30'S, and offshore Namibia in the area of the Benguela upwelling are under consideration in the book. Authors present new data on fauna of several groups of deep-sea bottom animals and their zoogeography. Much attention is paid to analysis of morphological structure of the Scotia Sea floor considered in terms of plate tectonics. Bottom sediments along the Transatlantic section and facial variation of sediments in the area of South Shetland Islands and of the continental margin of Namibia are under consideration.
Resumo:
The Baltic Sea has experienced three major intervals of bottom water hypoxia following the intrusion of seawater ca. 8 kyrs ago. These intervals occurred during the Holocene Thermal Maximum (HTM), Medieval Climate Anomaly (MCA) and during recent decades. Here, we show that sequestration of both Fe and Mn in Baltic Sea sediments generally increases with water depth, and we attribute this to shelf-to-basin transfer ("shuttling") of Fe and Mn. Burial of Mn in slope and basin sediments was enhanced following the lake-brackish/marine transition at the beginning of the hypoxic interval during the HTM. During hypoxic intervals, shelf-to-basin transfer of Fe was generally enhanced but that of Mn was reduced. However, intensification of hypoxia within hypoxic intervals led to decreased burial of both Mn and Fe in deep basin sediments. This implies a non-linearity in shelf Fe release upon expanding hypoxia with initial enhanced Fe release relative to oxic conditions followed by increased retention in shelf sediments, likely in the form of iron sulfide minerals. For Mn, extended hypoxia leads to more limited sequestration as Mn carbonate in deep basin sediments, presumably because of more rapid reduction of Mn oxides formed after inflows and subsequent escape of dissolved Mn to the overlying water. Our Fe records suggest that modern Baltic Sea hypoxia is more widespread than in the past. Furthermore, hypoxia-driven variations in shelf-to-basin transfer of Fe may have impacted the dynamics of P and sulfide in the Baltic Sea thus providing potential feedbacks on the further development of hypoxia.