551 resultados para Ionospheric scintillation
Resumo:
Canals, A.; Breen, A. R.; Ofman, L.; Moran, P. J.; Fallows, R. A., Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements, Annales Geophysicae, vol. 20, Issue 9, pp.1265-1277
Resumo:
Breen, Andrew; Fallows, R. A.; Thomasson, P.; Bisi, M. M., 'Extremely long baseline interplanetary scintillation measurements of solar wind velocity', Journal of Geophysical Research (2006) 111(A8) pp.A08104 RAE2008
Resumo:
Pryse, Sian; Kersley, L.; Malan, D.; Bishop, G. J., 'Parameterization of the main ionospheric trough in the European sector, Radio Science (2006) 41 pp.RS5S14 RAE2008
Resumo:
Purpose. Aminolevulinic acid (5-ALA) diffusion through both keratinised and non-keratinised tissue, used as a model tissue substrates, was evaluated, together with the depth of permeation and the concentration achieved following delivery from bioadhesive patch and proprietary cream formulations. Materials and Methods. Moisture-activated, bioadhesive patches loaded with 5-ALA at concentrations of 19.0, 38.0 and 50.0 mg cm(-2) and an o/w cream (20% w/w 5-ALA) were radiolabelled with C14 5-ALA and applied to excised human vaginal tissue and porcine skin. After 1, 2 and 4 h, tissue was sectioned in two orientations and the 5-ALA concentration at specific depths determined using autoradiography and liquid scintillation counting (LSC). Results. The stratum corneum was a significant barrier to 5-ALA permeation, with concentrations in tissue dependent on application time and drug loading. 5-ALA was detected at 6 mm using autoradiography after 2 h, with LSC showing phototoxic concentrations at 2.375 mm after 4 h of application. Inclusion of oleic acid and dimethyl sulphoxide in bioadhesive patches increased 5-ALA significantly in neonate porcine tissue, but only for patches cast from blends containing 5% w/w oleic acid. Conclusions. The bioadhesive patch described delivered 5-ALA to depths of at least 2.5 mm in tissue types indicative of vulval skin, suggesting that photodynamic therapy of deep vulval intraepithelial neoplasia is feasible using this means of bioadhesive 5-ALA delivery.
Resumo:
Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.
Resumo:
Lightning data, collected using a Boltek Storm Tracker system installed at Chilton, UK, were used to investigate the mean response of the ionospheric sporadic-E layer to lightning strokes in a superposed epoch study. The lightning detector can discriminate between positive and negative lightning strokes and between cloud-to-ground ( CG) and inter-cloud ( IC) lightning. Superposed epoch studies carried out separately using these subsets of lightning strokes as trigger events have revealed that the dominant cause of the observed ionospheric enhancement in the Es layer is negative cloud-to-ground lightning.
Resumo:
We present a study of the geographic location of lightning affecting the ionospheric sporadic-E (Es) layer over the ionospheric monitoring station at Chilton, UK. Data from the UK Met Office's Arrival Time Difference (ATD) lightning detection system were used to locate lightning strokes in the vicinity of the ionospheric monitoring station. A superposed epoch study of this data has previously revealed an enhancement in the Es layer caused by lightning within 200km of Chilton. In the current paper, we use the same data to investigate the location of the lightning strokes which have the largest effect on the Es layer above Chilton. We find that there are several locations where the effect of lightning on the ionosphere is most significant statistically, each producing different ionospheric responses. We interpret this as evidence that there is more than one mechanism combining to produce the previously observed enhancement in the ionosphere.
Resumo:
A connection between thunderstorms and the ionosphere has been hypothesized since the mid-1920s(1). Several mechanisms have been proposed to explain this connection(2-7), and evidence from modelling(8) as well as various types of measurements(9-14) demonstrate that lightning can interact with the lower ionosphere. It has been proposed, on the basis of a few observed events(15), that the ionospheric 'sporadic E' layer - transient, localized patches of relatively high electron density in the mid-ionosphere E layer, which significantly affect radio-wave propagation - can be modulated by thunderstorms, but a more formal statistical analysis is still needed. Here we identify a statistically significant intensification and descent in altitude of the mid-latitude sporadic E layer directly above thunderstorms. Because no ionospheric response to low-pressure systems without lightning is detected, we conclude that this localized intensification of the sporadic E layer can be attributed to lightning. We suggest that the co-location of lightning and ionospheric enhancement can be explained by either vertically propagating gravity waves that transfer energy from the site of lightning into the ionosphere, or vertical electrical discharge, or by a combination of these two mechanisms.