207 resultados para IoT
Resumo:
With the development of the Internet-of-Things, more and more IoT platforms come up with different structures and characteristics. Making balance of their advantages and disadvantages, we should choose the suitable platform in differ- ent scenarios. For this project, I make comparison of a cloud-based centralized platform, Microsoft Azure IoT hub and a fully distributed platform, Sensi- bleThings. Quantitative comparison is made for performance by 2 scenarios, messages sending speed adds up, devices lie in different location. General com- parison is made for security, utilization and the storage. Finally I draw the con- clusion that SensibleThings performs more stable when a lot of messages push- es to the platform. Microsoft Azure has better geographic expansion. For gener- al comparison, Microsoft Azure IoT hub has better security. The requirement of local device for Microsoft Azure IoT hub is lower than SensibleThings. The SensibleThings are open source and free while Microsoft Azure follow the con- cept “pay as you go” with many throttling limitations for different editions. Microsoft is more user-friendly.
Resumo:
Cognitive radio (CR) is fast emerging as a promising technology that can meet the machine-to machine (M2M) communication requirements for spectrum utilization and power control for large number of machines/devices expected to be connected to the Internet-of Things (IoT). Power control in CR as a secondary user can been modelled as a non-cooperative game cost function to quantify and reduce its effects of interference while occupying the same spectrum as primary user without adversely affecting the required quality of service (QoS) in the network. In this paper a power loss exponent that factors in diverse operating environments for IoT is employed in the non-cooperative game cost function to quantify the required power of transmission in the network. The approach would enable various CRs to transmit with lesser power thereby saving battery consumption or increasing the number of secondary users thereby optimizing the network resources efficiently.
Resumo:
The continuous technology evaluation is benefiting our lives to a great extent. The evolution of Internet of things and deployment of wireless sensor networks is making it possible to have more connectivity between people and devices used extensively in our daily lives. Almost every discipline of daily life including health sector, transportation, agriculture etc. is benefiting from these technologies. There is a great potential of research and refinement of health sector as the current system is very often dependent on manual evaluations conducted by the clinicians. There is no automatic system for patient health monitoring and assessment which results to incomplete and less reliable heath information. Internet of things has a great potential to benefit health care applications by automated and remote assessment, monitoring and identification of diseases. Acute pain is the main cause of people visiting to hospitals. An automatic pain detection system based on internet of things with wireless devices can make the assessment and redemption significantly more efficient. The contribution of this research work is proposing pain assessment method based on physiological parameters. The physiological parameters chosen for this study are heart rate, electrocardiography, breathing rate and galvanic skin response. As a first step, the relation between these physiological parameters and acute pain experienced by the test persons is evaluated. The electrocardiography data collected from the test persons is analyzed to extract interbeat intervals. This evaluation clearly demonstrates specific patterns and trends in these parameters as a consequence of pain. This parametric behavior is then used to assess and identify the pain intensity by implementing machine learning algorithms. Support vector machines are used for classifying these parameters influenced by different pain intensities and classification results are achieved. The classification results with good accuracy rates between two and three levels of pain intensities shows clear indication of pain and the feasibility of this pain assessment method. An improved approach on the basis of this research work can be implemented by using both physiological parameters and electromyography data of facial muscles for classification.
Resumo:
Food safety has always been a social issue that draws great public attention. With the rapid development of wireless communication technologies and intelligent devices, more and more Internet of Things (IoT) systems are applied in the food safety tracking field. However, connection between things and information system is usually established by pre-storing information of things into RFID Tag, which is inapplicable for on-field food safety detection. Therefore, considering pesticide residue is one of the severe threaten to food safety, a new portable, high-sensitivity, low-power, on-field organophosphorus (OP) compounds detection system is proposed in this thesis to realize the on-field food safety detection. The system is designed based on optical detection method by using a customized photo-detection sensor. A Micro Controller Unit (MCU) and a Bluetooth Low Energy (BLE) module are used to quantize and transmit detection result. An Android Application (APP) is also developed for the system to processing and display detection result as well as control the detection process. Besides, a quartzose sample container and black system box are also designed and made for the system demonstration. Several optimizations are made in wireless communication, circuit layout, Android APP and industrial design to realize the mobility, low power and intelligence.
Resumo:
The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.
Resumo:
Only recently, during the past five years, consumer electronics has been evolving rapidly. Many products have started to include “smart home” capabilities, enabling communication and interoperability of various smart devices. Even more devices and sensors can be remote controlled and monitored through cloud services. While the smart home systems have become very affordable to average consumer compared to the early solutions decades ago, there are still many issues and things that need to be fixed or improved upon: energy efficiency, connectivity with other devices and applications, security and privacy concerns, reliability, and response time. This paper focuses on designing Internet of Things (IoT) node and platform architectures that take these issues into account, notes other currently used solutions, and selects technologies in order to provide better solution. The node architecture aims for energy efficiency and modularity, while the platform architecture goals are in scalability, portability, maintainability, performance, and modularity. Moreover, the platform architecture attempts to improve user experience by providing higher reliability and lower response time compared to the alternative platforms. The architectures were developed iteratively using a development process involving research, planning, design, implementation, testing, and analysis. Additionally, they were documented using Kruchten’s 4+1 view model, which is used to describe the use cases and different views of the architectures. The node architecture consisted of energy efficient hardware, FC3180 microprocessor and CC2520 RF transceiver, modular operating system, Contiki, and a communication protocol, AllJoyn, used for providing better interoperability with other IoT devices and applications. The platform architecture provided reliable low response time control, monitoring, and initial setup capabilities by utilizing web technologies on various devices such as smart phones, tablets, and computers. Furthermore, an optional cloud service was provided in order to control devices and monitor sensors remotely by utilizing scalable high performance technologies in the backend enabling low response time and high reliability.
Resumo:
The continuous flow of technological developments in communications and electronic industries has led to the growing expansion of the Internet of Things (IoT). By leveraging the capabilities of smart networked devices and integrating them into existing industrial, leisure and communication applications, the IoT is expected to positively impact both economy and society, reducing the gap between the physical and digital worlds. Therefore, several efforts have been dedicated to the development of networking solutions addressing the diversity of challenges associated with such a vision. In this context, the integration of Information Centric Networking (ICN) concepts into the core of IoT is a research area gaining momentum and involving both research and industry actors. The massive amount of heterogeneous devices, as well as the data they produce, is a significant challenge for a wide-scale adoption of the IoT. In this paper we propose a service discovery mechanism, based on Named Data Networking (NDN), that leverages the use of a semantic matching mechanism for achieving a flexible discovery process. The development of appropriate service discovery mechanisms enriched with semantic capabilities for understanding and processing context information is a key feature for turning raw data into useful knowledge and ensuring the interoperability among different devices and applications. We assessed the performance of our solution through the implementation and deployment of a proof-of-concept prototype. Obtained results illustrate the potential of integrating semantic and ICN mechanisms to enable a flexible service discovery in IoT scenarios.
Resumo:
Trabajo realizado en la empresa ULMA Embedded Solutions
Resumo:
69 p.
Resumo:
Mantener y asegurar la cadena del frío en el transporte de alimentos perecederos es uno de los aspectos más importantes que deben tener en cuenta las empresas de logística y cadenas de venta al consumidor. Con el control de la cadena del frío se puede asegurar tanto unos mínimos de calidad como de seguridad del producto en cuestión. Para asegurar el cumplimiento de la cadena de frío en el transporte de alimentos (o medicamentos) existen actualmente multitud de sistemas o dispositivos en el mercado que pueden cumplir perfectamente ese papel. Algunos de ellos son sistemas que únicamente informan al operario en destino si se ha producido una ruptura de la cadena del frío sirviendo como control de calidad previo a la venta de los alimentos, pero por el contrario otros sistemas sí que realizan un control exhaustivo de la cadena de frío en tiempo real dando una mayor capacidad de reacción a la empresa logística o cadena de venta para subsanar cuanto antes esa ruptura en la cadena del frío. Es este tipo de sistemas en el que se va a basar este proyecto. Por ello con la ayuda de la arquitectura IoT se mejorarán las principales ventajas que tienen este tipo de sistemas (funcionalidad) y disminuirán o incluso eliminarán las desventajas que tienen este tipo de sistemas, principalmente coste (objetivo más importante del proyecto) y dificultad de instalación.
Resumo:
In this paper, a smart wireless wristband is proposed. The potential of innovative gesture based interactivity with connected lighting solutions is reviewed. The solution is intended to offer numerous benefits, in terms of ease of use, and enhanced dynamic interactive functionality. A comparative analysis will be carried out between this work and existing solutions. The evolution of lighting and gesture controls will be discussed and an overview of alternative applications will be provided, as part of the critical analysis.
Resumo:
The authors present a proposal to develop intelligent assisted living environments for home based healthcare. These environments unite the chronical patient clinical history sematic representation with the ability of monitoring the living conditions and events recurring to a fully managed Semantic Web of Things (SWoT). Several levels of acquired knowledge and the case based reasoning that is possible by knowledge representation of the health-disease history and acquisition of the scientific evidence will deliver, through various voice based natural interfaces, the adequate support systems for disease auto management but prominently by activating the less differentiated caregiver for any specific need. With these capabilities at hand, home based healthcare providing becomes a viable possibility reducing the institutionalization needs. The resulting integrated healthcare framework will provide significant savings while improving the generality of health and satisfaction indicators.
Resumo:
This paper is an overview of some of the implications of IoT on the healthcare field. Due to the increasing of IoT solutions, healthcare cannot be outside of this paradigm. The contribution of this paper is to introduce directions to achieve a global connectivity between the Internet of Things (IoT) and the medical environments. The need to integrate all in a global environment is a huge challenge to all (from electrical engineers to data engineers).This revolution is redesigning the way we see healthcare, from the smallest sensor to the big data collected.
Resumo:
Embedding intelligence in extreme edge devices allows distilling raw data acquired from sensors into actionable information, directly on IoT end-nodes. This computing paradigm, in which end-nodes no longer depend entirely on the Cloud, offers undeniable benefits, driving a large research area (TinyML) to deploy leading Machine Learning (ML) algorithms on micro-controller class of devices. To fit the limited memory storage capability of these tiny platforms, full-precision Deep Neural Networks (DNNs) are compressed by representing their data down to byte and sub-byte formats, in the integer domain. However, the current generation of micro-controller systems can barely cope with the computing requirements of QNNs. This thesis tackles the challenge from many perspectives, presenting solutions both at software and hardware levels, exploiting parallelism, heterogeneity and software programmability to guarantee high flexibility and high energy-performance proportionality. The first contribution, PULP-NN, is an optimized software computing library for QNN inference on parallel ultra-low-power (PULP) clusters of RISC-V processors, showing one order of magnitude improvements in performance and energy efficiency, compared to current State-of-the-Art (SoA) STM32 micro-controller systems (MCUs) based on ARM Cortex-M cores. The second contribution is XpulpNN, a set of RISC-V domain specific instruction set architecture (ISA) extensions to deal with sub-byte integer arithmetic computation. The solution, including the ISA extensions and the micro-architecture to support them, achieves energy efficiency comparable with dedicated DNN accelerators and surpasses the efficiency of SoA ARM Cortex-M based MCUs, such as the low-end STM32M4 and the high-end STM32H7 devices, by up to three orders of magnitude. To overcome the Von Neumann bottleneck while guaranteeing the highest flexibility, the final contribution integrates an Analog In-Memory Computing accelerator into the PULP cluster, creating a fully programmable heterogeneous fabric that demonstrates end-to-end inference capabilities of SoA MobileNetV2 models, showing two orders of magnitude performance improvements over current SoA analog/digital solutions.
Resumo:
In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources.