952 resultados para Inverse analysis
Resumo:
The first analysis and synthesis equations for the newly introduced inverse Class-E amplifier when operated with a finite d.c. blocking capacitance and a finite d.c.-feed inductance are presented in the paper. Closed-form design equations are derived in order to establish the circuit component values required for optimum synthesis. Excellent agreement between numerical simulation results and theoretical prediction is obtained. It is shown that drain efficiency approaching 100 at a pre-specified output power level can be achieved as zero-current switching and zero-current derivative conditions are simultaneously satisfied. The proposed analysis offers the prospect for realistic MMIC implementation.
Resumo:
Auf dem Gebiet der Strukturdynamik sind computergestützte Modellvalidierungstechniken inzwischen weit verbreitet. Dabei werden experimentelle Modaldaten, um ein numerisches Modell für weitere Analysen zu korrigieren. Gleichwohl repräsentiert das validierte Modell nur das dynamische Verhalten der getesteten Struktur. In der Realität gibt es wiederum viele Faktoren, die zwangsläufig zu variierenden Ergebnissen von Modaltests führen werden: Sich verändernde Umgebungsbedingungen während eines Tests, leicht unterschiedliche Testaufbauten, ein Test an einer nominell gleichen aber anderen Struktur (z.B. aus der Serienfertigung), etc. Damit eine stochastische Simulation durchgeführt werden kann, muss eine Reihe von Annahmen für die verwendeten Zufallsvariablengetroffen werden. Folglich bedarf es einer inversen Methode, die es ermöglicht ein stochastisches Modell aus experimentellen Modaldaten zu identifizieren. Die Arbeit beschreibt die Entwicklung eines parameter-basierten Ansatzes, um stochastische Simulationsmodelle auf dem Gebiet der Strukturdynamik zu identifizieren. Die entwickelte Methode beruht auf Sensitivitäten erster Ordnung, mit denen Parametermittelwerte und Kovarianzen des numerischen Modells aus stochastischen experimentellen Modaldaten bestimmt werden können.
Resumo:
In survival analysis frailty is often used to model heterogeneity between individuals or correlation within clusters. Typically frailty is taken to be a continuous random effect, yielding a continuous mixture distribution for survival times. A Bayesian analysis of a correlated frailty model is discussed in the context of inverse Gaussian frailty. An MCMC approach is adopted and the deviance information criterion is used to compare models. As an illustration of the approach a bivariate data set of corneal graft survival times is analysed. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Lipid cubic phases are complex nanostructures that form naturally in a variety of biological systems, with applications including drug delivery and nanotemplating. Most X-ray scattering studies on lipid cubic phases have used unoriented polydomain samples as either bulk gels or suspensions of micrometer-sized cubosomes. We present a method of investigating cubic phases in a new form, as supported thin films that can be analyzed using grazing incidence small-angle X-ray scattering (GISAXS). We present GISAXS data on three lipid systems: phytantriol and two grades of monoolein (research and industrial). The use of thin films brings a number of advantages. First, the samples exhibit a high degree of uniaxial orientation about the substrate normal. Second, the new morphology allows precise control of the substrate mesophase geometry and lattice parameter using a controlled temperature and humidity environment, and we demonstrate the controllable formation of oriented diamond and gyroid inverse bicontinuous cubic along with lamellar phases. Finally, the thin film morphology allows the induction of reversible phase transitions between these mesophase structures by changes in humidity on subminute time scales, and we present timeresolved GISAXS data monitoring these transformations.
Resumo:
The thesis consists of three independent parts. Part I: Polynomial amoebas We study the amoeba of a polynomial, as de ned by Gelfand, Kapranov and Zelevinsky. A central role in the treatment is played by a certain convex function which is linear in each complement component of the amoeba, which we call the Ronkin function. This function is used in two di erent ways. First, we use it to construct a polyhedral complex, which we call a spine, approximating the amoeba. Second, the Monge-Ampere measure of the Ronkin function has interesting properties which we explore. This measure can be used to derive an upper bound on the area of an amoeba in two dimensions. We also obtain results on the number of complement components of an amoeba, and consider possible extensions of the theory to varieties of codimension higher than 1. Part II: Differential equations in the complex plane We consider polynomials in one complex variable arising as eigenfunctions of certain differential operators, and obtain results on the distribution of their zeros. We show that in the limit when the degree of the polynomial approaches innity, its zeros are distributed according to a certain probability measure. This measure has its support on the union of nitely many curve segments, and can be characterized by a simple condition on its Cauchy transform. Part III: Radon transforms and tomography This part is concerned with different weighted Radon transforms in two dimensions, in particular the problem of inverting such transforms. We obtain stability results of this inverse problem for rather general classes of weights, including weights of attenuation type with data acquisition limited to a 180 degrees range of angles. We also derive an inversion formula for the exponential Radon transform, with the same restriction on the angle.
Resumo:
In my PhD thesis I propose a Bayesian nonparametric estimation method for structural econometric models where the functional parameter of interest describes the economic agent's behavior. The structural parameter is characterized as the solution of a functional equation, or by using more technical words, as the solution of an inverse problem that can be either ill-posed or well-posed. From a Bayesian point of view, the parameter of interest is a random function and the solution to the inference problem is the posterior distribution of this parameter. A regular version of the posterior distribution in functional spaces is characterized. However, the infinite dimension of the considered spaces causes a problem of non continuity of the solution and then a problem of inconsistency, from a frequentist point of view, of the posterior distribution (i.e. problem of ill-posedness). The contribution of this essay is to propose new methods to deal with this problem of ill-posedness. The first one consists in adopting a Tikhonov regularization scheme in the construction of the posterior distribution so that I end up with a new object that I call regularized posterior distribution and that I guess it is solution of the inverse problem. The second approach consists in specifying a prior distribution on the parameter of interest of the g-prior type. Then, I detect a class of models for which the prior distribution is able to correct for the ill-posedness also in infinite dimensional problems. I study asymptotic properties of these proposed solutions and I prove that, under some regularity condition satisfied by the true value of the parameter of interest, they are consistent in a "frequentist" sense. Once I have set the general theory, I apply my bayesian nonparametric methodology to different estimation problems. First, I apply this estimator to deconvolution and to hazard rate, density and regression estimation. Then, I consider the estimation of an Instrumental Regression that is useful in micro-econometrics when we have to deal with problems of endogeneity. Finally, I develop an application in finance: I get the bayesian estimator for the equilibrium asset pricing functional by using the Euler equation defined in the Lucas'(1978) tree-type models.
Resumo:
Massive parallel robots (MPRs) driven by discrete actuators are force regulated robots that undergo continuous motions despite being commanded through a finite number of states only. Designing a real-time control of such systems requires fast and efficient methods for solving their inverse static analysis (ISA), which is a challenging problem and the subject of this thesis. In particular, five Artificial intelligence methods are proposed to investigate the on-line computation and the generalization error of ISA problem of a class of MPRs featuring three-state force actuators and one degree of revolute motion.
Resumo:
A large scale Chinese agricultural survey was conducted at the direction of John Lossing Buck from 1929 through 1933. At the end of the 1990’s, some parts of the original micro data of Buck’s survey were discovered at Nanjing Agricultural University. An international joint study was begun to restore micro data of Buck’s survey and construct parts of the micro database on both the crop yield survey and special expenditure survey. This paper includes a summary of the characteristics of farmlands and cropping patterns in crop yield micro data that covered 2,102 farmers in 20 counties of 9 provinces. In order to test the classical hypothesis of whether or not an inverse relationship between land productivity and cultivated area may be observed in developing countries, a Box-Cox transformation test was conducted for functional forms on five main crops of Buck’s crop yield survey. The result of the test shows that the relationship between land productivity and cultivated areas of wheat and barley is linear and somewhat negative; those of rice, rapeseed, and seed cotton appear to be slightly positive. It can be tentatively concluded that the relationship between cultivated area and land productivity are not the same among crops, and the difference of labor intensity and the level of commercialization of each crop may be strongly related to the existence or non-existence of inverse relationships.
Resumo:
The retrieval of wind vectors from satellite scatterometer observations is a non-linear inverse problem. A common approach to solving inverse problems is to adopt a Bayesian framework and to infer the posterior distribution of the parameters of interest given the observations by using a likelihood model relating the observations to the parameters, and a prior distribution over the parameters. We show how Gaussian process priors can be used efficiently with a variety of likelihood models, using local forward (observation) models and direct inverse models for the scatterometer. We present an enhanced Markov chain Monte Carlo method to sample from the resulting multimodal posterior distribution. We go on to show how the computational complexity of the inference can be controlled by using a sparse, sequential Bayes algorithm for estimation with Gaussian processes. This helps to overcome the most serious barrier to the use of probabilistic, Gaussian process methods in remote sensing inverse problems, which is the prohibitively large size of the data sets. We contrast the sampling results with the approximations that are found by using the sparse, sequential Bayes algorithm.
Resumo:
BACKGROUND & AIMS: Gluteofemoral obesity (determined by measurement of subcutaneous fat in hip and thigh regions) could reduce risks of cardiovascular and diabetic disorders associated with abdominal obesity. We evaluated whether gluteofemoral obesity also reduces risk of Barrett's esophagus (BE), a premalignant lesion associated with abdominal obesity.
METHODS: We collected data from non-Hispanic white participants in 8 studies in the Barrett's and Esophageal Adenocarcinoma Consortium. We compared measures of hip circumference (as a proxy for gluteofemoral obesity) from cases of BE (n=1559) separately with 2 control groups: 2557 population-based controls and 2064 individuals with gastroesophageal reflux disease (GERD controls). Study-specific odds ratios (OR) and 95% confidence intervals (95% CI) were estimated using individual participant data and multivariable logistic regression and combined using random effects meta-analysis.
RESULTS: We found an inverse relationship between hip circumference and BE (OR per 5 cm increase, 0.88; 95% CI, 0.81-0.96), compared with population-based controls in a multivariable model that included waist circumference. This association was not observed in models that did not include waist circumference. Similar results were observed in analyses stratified by frequency of GERD symptoms. The inverse association with hip circumference was only statistically significant among men (vs population-based controls: OR, 0.85; 95% CI, 0.76-0.96 for men; OR, 0.93; 95% CI, 0.74-1.16 for women). For men, within each category of waist circumference, a larger hip circumference was associated with decreased risk of BE. Increasing waist circumference was associated with increased risk of BE in the mutually adjusted population-based and GERD control models.
CONCLUSIONS: Although abdominal obesity is associated with increased risk of BE, there is an inverse association between gluteofemoral obesity and BE, particularly among men.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
A new analysis of hydrographic data in the Atlantic and its application to an inverse modeling study