917 resultados para Invasive Species Prevention, Management and Control
Resumo:
The sea lamprey Petromyzon marinus (Linnaeus) is both an invasive non-native species in the Laurentian Great Lakes of North America and an imperiled species in much of its native range in North America and Europe. To compare and contrast how understanding of population ecology is useful for control programs in the Great Lakes and restoration programs in Europe, we review current understanding of the population ecology of the sea lamprey in its native and introduced range. Some attributes of sea lamprey population ecology are particularly useful for both control programs in the Great Lakes and restoration programs in the native range. First, traps within fish ladders are beneficial for removing sea lampreys in Great Lakes streams and passing sea lampreys in the native range. Second, attractants and repellants are suitable for luring sea lampreys into traps for control in the Great Lakes and guiding sea lamprey passage for conservation in the native range. Third, assessment methods used for targeting sea lamprey control in the Great Lakes are useful for targeting habitat protection in the native range. Last, assessment methods used to quantify numbers of all life stages of sea lampreys would be appropriate for measuring success of control in the Great Lakes and success of conservation in the native range.
Resumo:
Surveillance for invasive non-indigenous species (NIS) is an integral part of a quarantine system. Estimating the efficiency of a surveillance strategy relies on many uncertain parameters estimated by experts, such as the efficiency of its components in face of the specific NIS, the ability of the NIS to inhabit different environments, and so on. Due to the importance of detecting an invasive NIS within a critical period of time, it is crucial that these uncertainties be accounted for in the design of the surveillance system. We formulate a detection model that takes into account, in addition to structured sampling for incursive NIS, incidental detection by untrained workers. We use info-gap theory for satisficing (not minimizing) the probability of detection, while at the same time maximizing the robustness to uncertainty. We demonstrate the trade-off between robustness to uncertainty, and an increase in the required probability of detection. An empirical example based on the detection of Pheidole megacephala on Barrow Island demonstrates the use of info-gap analysis to select a surveillance strategy.
Resumo:
Hazard site surveillance is a system for post-border detection of new pest incursions, targeting sites that are considered potentially at high risk of such introductions. Globalisation, increased volumes of containerised freight and competition for space at domestic ports means that goods are increasingly being first opened at premises some distance from the port of entry, thus dispersing risk away from the main inspection point. Hazard site surveillance acts as a backstop to border control to ensure that new incursions are detected sufficiently early to allow the full range of management options, including eradication and containment, to be considered. This is particularly important for some of the more cryptic forest pests whose presence in a forest often is not discovered until populations are already high and the pest is well established. General requirements for a hazard site surveillance program are discussed using a program developed in Brisbane, Australia, in 2006 as a case study. Some early results from the Brisbane program are presented. In total 67 species and 5757 individuals of wood-boring beetles have been trapped and identified during the program to date. Scolytines are the most abundant taxa, making up 83% of the catch. No new exotics have been trapped but 19 of the species and 60% of all specimens caught are exotics that are already established in Australia.
Resumo:
The common blacktip shark (Carcharhinus limbatus) and the Australian blacktip shark (C. tilstoni) are morphologically similar species that co-occur in subtropical and tropical Australia. In striking contrast to what has been previously reported, we demonstrate that the common blacktip shark is not rare in northern Australia but occurs in approximately equal frequencies with the Australian blacktip shark. Management of shark resources in northern Australia needs to take account of this new information. Species identification was performed using nucleotide sequences of the control, NADH dehydrogenase subunit 4 (ND4) and cytochrome oxidase I (COI) regions in the mitochondrial genome. The proportion of overall genetic variation (FST) between the two species was small (0.042, P < 0.01) based on allele frequencies at five microsatellite loci. We confirm that a third blacktip species (C. amblyrhynchoides, graceful shark) is closely related to C. tilstoni and C. limbatus and can be distinguished from them on the basis of mtDNA sequences from two gene regions. The Australian blacktip shark (C. tilstoni) was not encountered among 20 samples from central Indonesia that were later confirmed to be common blacktip and graceful sharks. Fisheries regulators urgently need new information on life history, population structure and morphological characters for species identification of blacktip shark species in Australia.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.
Resumo:
Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships with four modeling methods run with multiple scenarios of (1) sources of occurrences and geographically isolated background ranges for absences, (2) approaches to drawing background (absence) points, and (3) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved by using a global dataset for model training, rather than restricting data input to the species’ native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e. into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g. boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post-hoc test conducted on a new Partenium dataset from Nepal validated excellent predictive performance of our “best” model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for Parthenium hysterophorus L. (Asteraceae; parthenium). However, discrepancies between model predictions and parthenium invasion in Australia indicate successful management for this globally significant weed. This article is protected by copyright. All rights reserved.
Resumo:
Predicting and averting the spread of invasive species is a core focus of resource managers in all ecosystems. Patterns of invasion are difficult to forecast, compounded by a lack of user-friendly species distribution model (SDM) tools to help managers focus control efforts. This paper presents a web-based cellular automata hybrid modeling tool developed to study the invasion pattern of lionfish (Pterois volitans/miles) in the western Atlantic and is a natural extension our previous lionfish study. Our goal is to make publically available this hybrid SDM tool and demonstrate both a test case (P. volitans/miles) and a use case (Caulerpa taxifolia). The software derived from the model, titled Invasionsoft, is unique in its ability to examine multiple default or user-defined parameters, their relation to invasion patterns, and is presented in a rich web browser-based GUI with integrated results viewer. The beta version is not species-specific and includes a default parameter set that is tailored to the marine habitat. Invasionsoft is provided as copyright protected freeware at http://www.invasionsoft.com.
Resumo:
Biosecurity is a great challenge to policy-makers globally. Biosecurity policies aim to either prevent invasions before they occur or to eradicate and/or effectively manage the invasive species and diseases once an invasion has occurred. Such policies have traditionally been directed towards professional producers in natural resource based sectors, including agriculture. Given the wide scope of issues threatened by invasive species and diseases, it is important to account for several types of stakeholders that are involved. We investigate the problem of an invasive insect pest feeding on an agricultural crop with heterogeneous producers: profit-oriented professional farmers and utility-oriented hobby farmers. We start from an ecological-economic model conceptually similar to the one developed by Eiswerth and Johnson [Eiswerth, M.E. and Johnson, W.S., 2002. Managing nonindigenous invasive species: insights from dynamic analysis. Environmental and Resource Economics 23, 319-342.] and extend it in three ways. First, we make explicit the relationship between the invaded state carrying capacity and farmers' planting decisions. Second, we add another producer type into the framework and hence account for the existence of both professional and hobby fanners. Third, we provide a theoretical contribution by discussing two alternative types of equilibria. We also apply the model to an empirical case to extract a number of stylised facts and in particular to assess: a) under which circumstances the invasion is likely to be not controllable; and b) how extending control policies to hobby farmers could affect both types of producers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The nocturnal, terrestrial frog Eleutherodactylus coqui, known as the Coqui, is endemic to Puerto Rico and was accidentally introduced to Hawai‘i via nursery plants in the late 1980s. Over the past two decades E. coqui has spread to the four main Hawaiian Islands, and a major campaign was launched to eliminate and control it. One of the primary reasons this frog has received attention is its loud mating call (85–90 dB at 0.5 m). Many homeowners do not want the frogs on their property, and their presence has influenced housing prices. In addition, E. coqui has indirectly impacted the floriculture industry because customers are reticent to purchase products potentially infested with frogs. Eleutherodactylus coqui attains extremely high densities in Hawai‘i, up to 91,000 frogs ha-1, and can reproduce year-round, once every 1–2 months, and become reproductive around 8–9 months. Although the Coqui has been hypothesized to potentially compete with native insectivores, the most obvious potential ecological impact of the invasion is predation on invertebrate populations and disruption of associated ecosystem processes. Multiple forms of control have been attempted in Hawai‘i with varying success. The most successful control available at this time is citric acid. Currently, the frog is established throughout the island of Hawai‘i but may soon be eliminated on the other Hawaiian Islands via control efforts. Eradication is deemed no longer possible on the island of Hawai‘i.
Resumo:
Background: Biological invasions are one of the major causes of biodiversity loss, yet remain rather understudied in tropical environments. The Australian palm tree Archontophoenix cunninghamiana was introduced into Brazil for ornamental purposes, but has become an invasive species in urban and suburban forest patches. The substitution of A. cunninghamiana by the native palm Euterpe edulis has been proposed as a management action. Aims: We aimed to evaluate the regeneration potential of these two palm species in an Atlantic forest remnant in south-eastern Brazil where both species occur. Methods: We compared seedling establishment and seed longevity of both species through seed sowing, and also measured the contribution of A. cunninghamiana to the local seed rain and seed bank. Results: Nearly half of the non-anemochoric diaspores collected from the seed rain belonged to A. cunninghamiana, which represented a high propagule pressure in the community. The distribution of the alien palm seeds in the seed rain correlated with the distribution of nearby young and adult individuals inside the forest. Neither A. cunninghamiana nor E. edulis appeared to have a persistent seed bank in a burial experiment; seedling survival experiments suggested a much better performance for A. cunninghamiana, which had a survival rate of ca. 30% compared with a rate of only 3.5% for E. edulis. Conclusions: The results suggest a higher regeneration capacity for the alien palm over the native species when co-occurring in a forest fragment. Management actions are thus proposed to reduce a potential biological invasion process.
Resumo:
Acute coronary syndromes represent a broad spectrum of ischemic myocardial events including unstable angina, non-ST elevation myocardial infarction and acute ST elevation myocardial infarction, which are associated with high morbidity and mortality. They constitute the most frequent cause of hospital admission related to cardiac disease. Early diagnosis and risk stratification are essential for initiation of optimal medical and invasive management. Therapeutic measures comprise aggressive antiplatelet, antithrombotic, and anti-ischemic agents. In addition, patients with high-risk features, notably positive troponin, ST segment changes and diabetes, benefit from an early invasive as compared to a conservative strategy. Importantly, lifestyle interventions, modification of the risk factor profile, and long-term medical treatment are of pivotal importance in reducing the long-term risk of recurrence.
Resumo:
Small hive beetles (SHBs) are generalists native to sub-Saharan Africa and reproduce in association with honeybees, bumblebees, stingless bees, fruits and meat. The SHB has recently become an invasive species, and introductions have been recorded from America, Australia, Europe and Asia since 1996. hile SHBs are usually considered a minor pest in Africa, they can cause significant damage to social bee colonies in their new ranges. Potential reasons for differential impact include differences in bee behaviour, climate and release from natural enemies. Here, we provide an overview on biology, distribution, pest status, diagnosis, control and prevention to foster adequate mitigation and stimulate future research. SHBs have become a global threat to both apiculture and wild bee populations, but our knowledge of this pest is still limited, reating demand for more research in all areas of its biology.
Resumo:
Invasive species (IS) threaten biodiversity and ecosystem functioning. To achieve landscape-scale reductions in IS and the associated gains for biodiversity, IS control efforts must be expanded across private lands. Enhancing IS control across private lands requires an understanding of the factors that motivate residents to engage or prohibit residents from engaging in efforts to control IS. Drawing from the collective interest model and literature, we sought to understand how a wide range of interpersonal, intrapersonal, and contextual factors might influence resident action around combating the invasive tree albizia (Falcataria moluccana), in the Puna District of Hawaiʻi. To do so, we used a cross-sectional survey of 243 residents and elastic net regression techniques. We found that residents’ actions related to IS control were related to their perceptions of social norms and community reciprocity regarding albizia control, as well as their knowledge of effective control strategies and their risk perceptions regarding albizia. These findings suggest that, although common intervention approaches that focus on providing education or subsidies are important, they may be more effective at reducing the spread of IS if coupled with approaches that build community reciprocity and norms.
Resumo:
This paper proposes a method for power flow control between utility and microgrid through back-to-back converters, which facilitates desired real and reactive power flow between utility and microgrid. In the proposed control strategy, the system can run in two different modes depending on the power requirement in the microgrid. In mode-1, specified amount of real and reactive power are shared between the utility and the microgrid through the back-to-back converters. Mode-2 is invoked when the power that can be supplied by the DGs in the microgrid reaches its maximum limit. In such a case, the rest of the power demand of the microgrid has to be supplied by the utility. An arrangement between DGs in the microgrid is proposed to achieve load sharing in both grid connected and islanded modes. The back-to-back converters also provide total frequency isolation between the utility and the microgrid. It is shown that the voltage or frequency fluctuation in the utility side has no impact on voltage or power in microgrid side. Proper relay-breaker operation coordination is proposed during fault along with the blocking of the back-to-back converters for seamless resynchronization. Both impedance and motor type loads are considered to verify the system stability. The impact of dc side voltage fluctuation of the DGs and DG tripping on power sharing is also investigated. The efficacy of the proposed control ar-rangement has been validated through simulation for various operating conditions. The model of the microgrid power system is simulated in PSCAD.
Resumo:
Throughout the developed world there is an increasing prevalence of childhood obesity. Because of this increase, and awareness of the risks to long term health that childhood obesity presents, the phenomena is now described by many as a global epidemic. Children, Obesity and Exercise provides sport, exercise and medicine students and professionals with an accessible and practical guide to understanding and managing childhood and adolescent obesity. It covers: overweight, obesity and body composition; physical activity, growth and development; psycho-social aspects of childhood obesity; physical activity behaviours; eating behaviours; measuring childrens behaviour; interventions for prevention and management of childhood obesity. Children, Obesity and Exercise addresses the need for authoritative advice and innovative approaches to the prevention and management of this chronic problem.