845 resultados para Intrusion Detection, Computer Security, Misuse
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
With the rapid growth of the Internet, computer attacks are increasing at a fast pace and can easily cause millions of dollar in damage to an organization. Detecting these attacks is an important issue of computer security. There are many types of attacks and they fall into four main categories, Denial of Service (DoS) attacks, Probe, User to Root (U2R) attacks, and Remote to Local (R2L) attacks. Within these categories, DoS and Probe attacks continuously show up with greater frequency in a short period of time when they attack systems. They are different from the normal traffic data and can be easily separated from normal activities. On the contrary, U2R and R2L attacks are embedded in the data portions of the packets and normally involve only a single connection. It becomes difficult to achieve satisfactory detection accuracy for detecting these two attacks. Therefore, we focus on studying the ambiguity problem between normal activities and U2R/R2L attacks. The goal is to build a detection system that can accurately and quickly detect these two attacks. In this dissertation, we design a two-phase intrusion detection approach. In the first phase, a correlation-based feature selection algorithm is proposed to advance the speed of detection. Features with poor prediction ability for the signatures of attacks and features inter-correlated with one or more other features are considered redundant. Such features are removed and only indispensable information about the original feature space remains. In the second phase, we develop an ensemble intrusion detection system to achieve accurate detection performance. The proposed method includes multiple feature selecting intrusion detectors and a data mining intrusion detector. The former ones consist of a set of detectors, and each of them uses a fuzzy clustering technique and belief theory to solve the ambiguity problem. The latter one applies data mining technique to automatically extract computer users’ normal behavior from training network traffic data. The final decision is a combination of the outputs of feature selecting and data mining detectors. The experimental results indicate that our ensemble approach not only significantly reduces the detection time but also effectively detect U2R and R2L attacks that contain degrees of ambiguous information.
Resumo:
This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection.
Resumo:
Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules
Resumo:
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules
Resumo:
The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we review the algorithms used, the development of the systems and the outcome of their implementation. We provide an introduction and analysis of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
This research investigates wireless intrusion detection techniques for detecting attacks on IEEE 802.11i Robust Secure Networks (RSNs). Despite using a variety of comprehensive preventative security measures, the RSNs remain vulnerable to a number of attacks. Failure of preventative measures to address all RSN vulnerabilities dictates the need for a comprehensive monitoring capability to detect all attacks on RSNs and also to proactively address potential security vulnerabilities by detecting security policy violations in the WLAN. This research proposes novel wireless intrusion detection techniques to address these monitoring requirements and also studies correlation of the generated alarms across wireless intrusion detection system (WIDS) sensors and the detection techniques themselves for greater reliability and robustness. The specific outcomes of this research are: A comprehensive review of the outstanding vulnerabilities and attacks in IEEE 802.11i RSNs. A comprehensive review of the wireless intrusion detection techniques currently available for detecting attacks on RSNs. Identification of the drawbacks and limitations of the currently available wireless intrusion detection techniques in detecting attacks on RSNs. Development of three novel wireless intrusion detection techniques for detecting RSN attacks and security policy violations in RSNs. Development of algorithms for each novel intrusion detection technique to correlate alarms across distributed sensors of a WIDS. Development of an algorithm for automatic attack scenario detection using cross detection technique correlation. Development of an algorithm to automatically assign priority to the detected attack scenario using cross detection technique correlation.
Resumo:
The ad hoc networks are vulnerable to attacks due to distributed nature and lack of infrastructure. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. The clustering protocols can be taken as an additional advantage in these processing constrained networks to collaboratively detect intrusions with less power usage and minimal overhead. Existing clustering protocols are not suitable for intrusion detection purposes, because they are linked with the routes. The route establishment and route renewal affects the clusters and as a consequence, the processing and traffic overhead increases due to instability of clusters. The ad hoc networks are battery and power constraint, and therefore a trusted monitoring node should be available to detect and respond against intrusions in time. This can be achieved only if the clusters are stable for a long period of time. If the clusters are regularly changed due to routes, the intrusion detection will not prove to be effective. Therefore, a generalized clustering algorithm has been proposed that can run on top of any routing protocol and can monitor the intrusions constantly irrespective of the routes. The proposed simplified clustering scheme has been used to detect intrusions, resulting in high detection rates and low processing and memory overhead irrespective of the routes, connections, traffic types and mobility of nodes in the network. Clustering is also useful to detect intrusions collaboratively since an individual node can neither detect the malicious node alone nor it can take action against that node on its own.
Resumo:
Mobile ad-hoc networks (MANETs) are temporary wireless networks useful in emergency rescue services, battlefields operations, mobile conferencing and a variety of other useful applications. Due to dynamic nature and lack of centralized monitoring points, these networks are highly vulnerable to attacks. Intrusion detection systems (IDS) provide audit and monitoring capabilities that offer the local security to a node and help to perceive the specific trust level of other nodes. We take benefit of the clustering concept in MANETs for the effective communication between nodes, where each cluster involves a number of member nodes and is managed by a cluster-head. It can be taken as an advantage in these battery and memory constrained networks for the purpose of intrusion detection, by separating tasks for the head and member nodes, at the same time providing opportunity for launching collaborative detection approach. The clustering schemes are generally used for the routing purposes to enhance the route efficiency. However, the effect of change of a cluster tends to change the route; thus degrades the performance. This paper presents a low overhead clustering algorithm for the benefit of detecting intrusion rather than efficient routing. It also discusses the intrusion detection techniques with the help of this simplified clustering scheme.
Resumo:
Network-based Intrusion Detection Systems (NIDSs) monitor network traffic for signs of malicious activities that have the potential to disrupt entire network infrastructures and services. NIDS can only operate when the network traffic is available and can be extracted for analysis. However, with the growing use of encrypted networks such as Virtual Private Networks (VPNs) that encrypt and conceal network traffic, a traditional NIDS can no longer access network traffic for analysis. The goal of this research is to address this problem by proposing a detection framework that allows a commercial off-the-shelf NIDS to function normally in a VPN without any modification. One of the features of the proposed framework is that it does not compromise on the confidentiality afforded by the VPN. Our work uses a combination of Shamir’s secret-sharing scheme and randomised network proxies to securely route network traffic to the NIDS for analysis. The detection framework is effective against two general classes of attacks – attacks targeted at the network hosts or attacks targeted at framework itself. We implement the detection framework as a prototype program and evaluate it. Our evaluation shows that the framework does indeed detect these classes of attacks and does not introduce any additional false positives. Despite the increase in network overhead in doing so, the proposed detection framework is able to consistently detect intrusions through encrypted networks.