995 resultados para Intestinal mucosa barrier
Resumo:
The mucosal epithelia of the digestive tract acts as a selective barrier, permeable to ions, small molecules and macromolecules. These epithelial cells aid the digestion of food and absorption of nutrients. They contribute to the protection against pathogens and undergo continuous cell renewal which facilitates the elimination of damaged cells. Both innate and adaptive defence mechanisms protect the gastrointestinal-mucosal surfaces against pathogens. Interaction of microorganisms with epithelial cells triggers a host response by activating specific transcription factors which control the expression of chemokines and cytokines. This host response is characterized by the recruitment of macrophages and neutrophils at the site of infection. Disruption of epithelial signalling pathways that recruit migratory immune cells results in a chronic inflammatory response. The adaptive defence mechanism relies on the collaboration of epithelial cells (resident sampling system) with antigen-presenting and lymphoid cells (migratory sampling system); in order to obtain samples of foreign antigen, these samples must be transported across the barriers without affecting the integrity of the barrier. These sampling systems are regulated by both environmental and host factors. Fates of the antigen may differ depending on the way in which they cross the epithelial barrier, i.e. via interaction with motile dendritic cells or epithelial M cells in the follicle-associated epithelium.
Resumo:
The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Avaliou-se o efeito da substituição parcial do farelo de soja (FS) por hidrolisado protéico do conteúdo celular de levedura (HPCCL), proteína isolada de soja (PIS) ou hidrolisado protéico de mucosa intestinal de suínos (HPMIS) em dietas com leite em pó integral (LPI) sobre o desempenho, os níveis séricos de uréia e a incidência de diarréia em leitões desmamados. Foram utilizados 40 leitões desmamados aos 21 dias de idade (20 machos castrados e 20 fêmeas), distribuídos em delineamento em blocos ao acaso, com cinco tratamentos (dietas) e oito repetições. As dietas foram fornecidas em três fases, de acordo com a idade dos animais: fase pré-inicial 1 (21 aos 35 dias de idade): dieta à base de milho e farelo de soja (FS); dieta com 15,0% LPI; dieta com 15,0% LPI + 3,5% HPMIS; dieta com 15,0% LPI + 5,0% de PIS; dieta com 15,0% LPI + 5,0% HPCCL. Na fase pré-inicial 2 (36 aos 49 dias de idade), foi mantida a dieta à base de milho e farelo de soja e o LPI foi reduzido para 7,5% em todas as dietas, o HPMIS para 1,5%, a PIS para 4% e o HPCCL foi mantido em 5%. Na fase inicial (50 aos 70 dias de idade), foi mantida a dieta à base de milho e farelo de soja, o LPI foi retirado de todas as dietas e os animais que nas fases pré-inicial 1 e 2 foram alimentados com as dietas contendo LPI e LPI + HPMIS passaram a ser alimentados com a dieta à base de milho e farelo de soja; a PIS foi reduzida para 3% e o HPCCL para 2,5%. No período de 21 a 35 dias, a dieta LPI + PIS proporcionou maior ganho diário de peso e melhor conversão alimentar. Nas fases seguintes, não houve diferença no desempenho entre as dietas. Até cinco dias após o desmame, os animais alimentados com as rações FS e LPI + PIS apresentaram menor índice de diarréia. Os níveis séricos de uréia não foram influenciados pelas dietas. A utilização de PIS, HPMIS e HPCCL em dietas complexas contendo leite em pó pode consistir em alternativa biologicamente viável em dietas para leitões.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Um experimento foi conduzido para verificar a influência da glutamina no turnover do carbono na mucosa intestinal de leitões desmamados. Nove matrizes receberam dietas compostas basicamente de plantas do ciclo fotossintético C4 durante toda a gestação (d‰13C = 17,12) e lactação (d‰13C = -19,26). Os leitões foram desmamados aos 21 dias de idade e 68 deles foram alimentados com ração composta de plantas do ciclo fotossintético C3 (d‰13C = -25,12). Os leitões foram aleatoriamente distribuídos em duas dietas: uma sem suplementação de glutamina; e outra suplementada com 1% de glutamina. Aos 0; 1; 1,5; 2; 2,5; 3; 3,5; 4; 4,5; 5; 5,5; 8; 11; 15, 20; 29 e 46 dias pós-desmame, dois leitões de cada dieta foram abatidos para coleta de amostras da mucosa intestinal, que foram analisadas quanto à composição isotópica de d‰13C e mensurada a velocidade de substituição do carbono no tempo. Os valores da meia-vida do carbono para a mucosa intestinal foram de 6,0 e 3,5 dias para as dietas controle e com glutamina, respectivamente. A glutamina acelerou a velocidade de substituição do carbono na mucosa intestinal, evidenciando sua ação benéfica na recuperação da estrutura do intestino após o desmame.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Stressful situations reduce the welfare, production indices and immune status of chickens. Salmonella spp. are a major zoonotic pathogens that annually cause over 1 billion infections worldwide. We therefore designed the current experiment to analyse the effects of 31 +/- 1 degrees C heat stress (HS) (from 35 to 41 days) on performance parameters, Salmonella invasion and small intestine integrity in broiler chickens infected with Salmonella Enteritidis. We observed that HS decreased body weight gain and feed intake. However, feed conversion was only increased when HS was combined with Salmonella Enteritidis infection. In addition, we observed an increase in serum corticosterone levels in all of the birds that were subjected to HS, showing a hypothalamus-pituitary-adrenal axis activation. Furthermore, mild acute multifocal lymphoplasmacytic enteritis, characterized by foci of heterophil infiltration in the duodenum, jejunum and ileum, was observed in the HS group. In contrast, similar but more evident enteritis was noted in the heat-stressed and Salmonella-infected group. In this group, moderate enteritis was observed in all parts of the small intestine. Lastly, we observed an increase in Salmonella counts in the spleens of the stressed and Salmonella-infected chickens. The combination of HS and Salmonella Enteritidis infection may therefore disrupt the intestinal barrier, which would allow pathogenic bacteria to migrate through the intestinal mucosa to the spleen and generate an inflammatory infiltrate in the gut, decreasing performance parameters.
Resumo:
Intestinal health is essential for the health of the body since the gastro-intestinal mucosa is the main site of interaction with the external environment, as well as the major area colonized by the microbiota. Intestinal health relies on proper barrier function, epithelial integrity and related mechanisms of protection (mucous layer, tight junctions, immune and inflammatory system). In pigs, during the weaning transition, intestinal inflammation and barrier integrity play a crucial role in regulating intestinal health and, consequently, pig’s health, growth and productivity. The aim of the project was to assess the impact of different nutritional strategies on the intestinal health of weaning piglets with reference to the inflammatory status and epithelial integrity. Therefore, in vivo trials were conducted to test the in-feed supplementation with zinc, tributyrin, or organic acids and nature-identical compounds (NIC) to weaning piglets. All the dietary interventions positively impacted the intestinal inflammatory status and, as a consequence, improved epithelial integrity by modulating tight junctions proteins (zinc or tributyrin) or by enhancing barrier properties measured with Ussing chambers (organic acids and NIC). These findings highlight that intestinal inflammation and barrier function are strictly linked, and that the control of inflammation is essential for adequate barrier function. In addition, in zinc trial and organic acids and NIC trial, better intestinal health could successfully result in better growth performance, as aimed for pig production improvement. To conclude, this work shows that dietary supplementation with bio-active substances such as zinc, tributyrin or organic acids and NIC may improve intestinal health of weaning piglets modulating intestinal inflammatory stress and barrier integrity and allowing better piglet’s health, growth and productivity.
Resumo:
Stringent control of immune responses in the intestinal mucosa is critical for the maintenance of immune homeostasis and prevention of tissue damage, such as observed during inflammatory bowel disease. Intestinal epithelial cells, primarily thought to form a simple physical barrier, critically regulate intestinal immune cell functions by producing immunoregulatory glucocorticoids on T-cell activation. In this study we investigated whether stimulation of cells of the innate immune system results in the induction of intestinal glucocorticoids synthesis and what role TNF-alpha plays in this process. Stimulation of the innate immune system with lipopolysaccharide (LPS) led to an up-regulation of colonic steroidogenic enzymes and the induction of intestinal glucocorticoid synthesis. The observed induction was dependent on macrophage effector functions, as depletion of macrophages using clodronate-containing liposomes, but not absence of T and B cells, inhibited intestinal glucocorticoid synthesis. LPS-induced glucocorticoid synthesis was critically dependent on TNF-alpha as it was significantly decreased in TNF-alpha-deficient animals. Both TNF receptor-1 and -2 were found to be equally involved in LPS- and T-cell-induced intestinal GC synthesis. These results describe a novel and critical role of TNF-alpha in immune cell-induced intestinal glucocorticoid synthesis.
Resumo:
The immune system faces a considerable challenge in its efforts to maintain tissue homeostasis in the intestinal mucosa. It is constantly confronted with a large array of antigens, and has to prevent the dissemination and proliferation of potentially harmful agents while sparing the vital structures of the intestine from immune-mediated destruction. Complex interactions between the highly adapted effector cells and mechanisms of the innate and adaptive immune system generally prevent the luminal microflora from penetrating the intestinal mucosa and from spreading systemically. Non-haematopoietic cells critically contribute to the maintenance of local tissue homeostasis in an antigen-rich environment by producing protective factors (e.g. production of mucus by goblet cells, or secretion of microbicidal defensins by Paneth cells) and also through interactions with the adaptive and innate immune system (such as the production of chemotactic factors that lead to the selective recruitment of immune cell subsets). The complexity of the regulatory mechanisms that control the local immune response to luminal antigens is also reflected in the observation that mutations in immunologically relevant genes often lead to the development of uncontrolled inflammatory reactions in the microbially colonized intestine of experimental animals.
Resumo:
Maintenance of intestinal epithelial barrier function is of vital importance in preventing uncontrolled influx of antigens and the potentially ensuing inflammatory disorders. Intestinal intraepithelial lymphocytes (IEL) are in intimate contact with epithelial cells and may critically regulate the epithelial barrier integrity. While a preserving impact has been ascribed to the T-cell receptor (TCR)-gammadelta subset of IEL, IEL have also been shown to attenuate the barrier function. The present study sought to clarify the effects of IEL by specifically investigating the influence of the TCR-alphabeta CD8alphabeta and TCR-alphabeta CD8alphaalpha subsets of IEL on the intestinal epithelial barrier integrity. To this end, an in vitro coculture system of the murine intestinal crypt-derived cell-line mIC(cl2) and syngeneic ex vivo isolated IEL was employed. Epithelial integrity was assessed by analysis of transepithelial resistance (TER) and paracellular flux of fluorescein isothiocyanate-conjugated (FITC-) dextran. The TCR-alphabeta CD8alphaalpha IEL and resting TCR-alphabeta CD8alphabeta IEL did not affect TER of mIC(cl2) or flux of FITC-dextran. In contrast, activated TCR-alphabeta CD8alphabeta IEL clearly disrupted the integrity of the mIC(cl2) monolayer. No disrupting effect was seen with activated TCR-alphabeta CD8alphabeta IEL from interferon-gamma knockout mice. These findings demonstrate that secretion of interferon-gamma by activated TCR-alphabeta CD8alphabeta IEL is strictly required and also sufficient for disrupting the intestinal epithelial barrier function.
Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis
Resumo:
In the mammalian gastrointestinal tract the close vicinity of abundant immune effector cells and trillions of commensal microbes requires sophisticated barrier and regulatory mechanisms to maintain vital host-microbial interactions and tissue homeostasis. During co-evolution of the host and its intestinal microbiota a protective multilayered barrier system was established to segregate the luminal microbes from the intestinal mucosa with its potent immune effector cells, limit bacterial translocation into host tissues to prevent tissue damage, while ensuring the vital functions of the intestinal mucosa and the luminal gut microbiota. In the present review we will focus on the different layers of protection in the intestinal tract that allow the successful mutualism between the microbiota and the potent effector cells of the intestinal innate and adaptive immune system. In particular, we will review some of the recent findings on the vital functions of the mucus layer and its site-specific adaptations to the changing quantities and complexities of the microbiota along the (gastro-) intestinal tract. Understanding the regulatory pathways that control the establishment of the mucus layer, but also its degradation during intestinal inflammation may be critical for designing novel strategies aimed at maintaining local tissue homeostasis and supporting remission from relapsing intestinal inflammation in patients with inflammatory bowel diseases.