852 resultados para Intelligent systems


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A distributed, agent-based intelligent system models and simulates a smart grid using physical players and computationally simulated agents. The proposed system can assess the impact of demand response programs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mathematical models have been vitally important in the development of technologies in building engineering. A literature review identifies that linear models are the most widely used building simulation models. The advent of intelligent buildings has added new challenges in the application of the existing models as an intelligent building requires learning and self-adjusting capabilities based on environmental and occupants' factors. It is therefore argued that the linearity is an impropriate basis for any model of either complex building systems or occupant behaviours for control or whatever purpose. Chaos and complexity theory reflects nonlinear dynamic properties of the intelligent systems excised by occupants and environment and has been used widely in modelling various engineering, natural and social systems. It is proposed that chaos and complexity theory be applied to study intelligent buildings. This paper gives a brief description of chaos and complexity theory and presents its current positioning, recent developments in building engineering research and future potential applications to intelligent building studies, which provides a bridge between chaos and complexity theory and intelligent building research.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper identifies the major challenges in the area of pattern formation. The work is also motivated by the need for development of a single framework to surmount these challenges. A framework based on the control of macroscopic parameters is proposed. The issue of transformation of patterns is specifically considered. A definition for transformation and four special cases, namely elementary and geometrical transformations by repositioning all or some robots in the pattern are provided. Two feasible tools for pattern transformation namely, a macroscopic parameter method and a mathematical tool - Moebius transformation also known as the linear fractional transformation are introduced. The realization of the unifying framework considering planning and communication is reported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agent-oriented cooperation techniques and standardized electronic healthcare record exchange protocols can be used to combine information regarding different facets of a therapy received by a patient from different healthcare providers at different locations. Provenance is an innovative approach to trace events in complex distributed processes, dependencies between such events, and associated decisions by human actors. We focus on three aspects of provenance in agent-mediated healthcare systems: first, we define the provenance concept and show how it can be applied to agent-mediated healthcare applications; second, we investigate and provide a method for independent and autonomous healthcare agents to document the processes they are involved in without directly interacting with each other; and third, we show that this method solves the privacy issues of provenance in agent-mediated healthcare systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper describes an urban traffic control system which aims at contributing to a more efficient traffic management system in the cities of Brazil. It uses fuzzy sets, case-based reasoning, and genetic algorithms to handle dynamic and unpredictable traffic scenarios, as well as uncertain, incomplete, and inconsistent information. The system is composed by one supervisor and several controller agents, which cooperate with each other to improve the system's results through Artificial Intelligence Techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The increase of computing power of the microcomputers has stimulated the building of direct manipulation interfaces that allow graphical representation of Linear Programming (LP) models. This work discusses the components of such a graphical interface as the basis for a system to assist users in the process of formulating LP problems. In essence, this work proposes a methodology which considers the modelling task as divided into three stages which are specification of the Data Model, the Conceptual Model and the LP Model. The necessity for using Artificial Intelligence techniques in the problem conceptualisation and to help the model formulation task is illustrated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the analysis that have been carried out in the alarm system of the DCRanger EMS. The intention of this study is to present the problem of alarm processing in electric energy control centers, its various aspects and operational difficulties due to operator needs. Some tests are produced in order to identify the desirable features an alarm system should possess in order to be of effective help in the operative duty. © 2006 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The structural health monitoring (SHM) systems based on electromechanical (E/M) impedance technique have been widely investigated. Although many studies indicate the reliability of this technique, some practical considerations still have to be considered in real applications. This paper presents an experimental analysis of the effect of the structure area on the system's performance. The results indicate that the sensitivity of the system to detect damage decreases significantly when the host structure has large cross-section area. Copyright © 2009 by ASME.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In an evermore competitive environment, power distribution companies need to continuously monitor and improve the reliability indices of their systems. The network reconfiguration (NR) of a distribution system is a technique that well adapts to this new deregulated environment for it allows improvement of system reliability indices without the onus involved in procuring new equipment. This paper presents a reliability-based NR methodology that uses metaheuristic techniques to search for the optimal network configuration. Three metaheuristics, i.e. Tabu Search, Evolution Strategy, and Differential Evolution, are tested using a Brazilian distribution network and the results are discussed. © 2009 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.