835 resultados para Intelligent agens
Resumo:
On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment.
Resumo:
There is consistent evidence showing that driver behaviour contributes to crashes and near miss incidents at railway level crossings (RLXs). The development of emerging Vehicle-to-Vehicle and Vehicle-to-Infrastructure technologies is a highly promising approach to improve RLX safety. To date, research has not evaluated comprehensively the potential effects of such technologies on driving behaviour at RLXs. This paper presents an on-going research programme assessing the impacts of such new technologies on human factors and drivers’ situational awareness at RLX. Additionally, requirements for the design of such promising technologies and ways to display safety information to drivers were systematically reviewed. Finally, a methodology which comprehensively assesses the effects of in-vehicle and road-based interventions warning the driver of incoming trains at RLXs is discussed, with a focus on both benefits and potential negative behavioural adaptations. The methodology is designed for implementation in a driving simulator and covers compliance, control of the vehicle, distraction, mental workload and drivers’ acceptance. This study has the potential to provide a broad understanding of the effects of deploying new in-vehicle and road-based technologies at RLXs and hence inform policy makers on safety improvements planning for RLX.
Resumo:
The development of an intelligent plug-in electric vehicle (PEV) network is an important research topic in the smart grid environment. An intelligent PEV network enables a flexible control of PEV charging and discharging activities and hence PEVs can be utilized as ancillary service providers in the power system concerned. Given this background, an intelligent PEV network architecture is first developed, and followed by detailed designs of its application layers, including the charging and discharging controlling system, mobility and roaming management, as well as communication mechanisms associated. The presented architecture leverages the philosophy in mobile communication network buildup
Resumo:
Teaching introductory programming has challenged educators through the years. Although Intelligent Tutoring Systems that teach programming have been developed to try to reduce the problem, none have been developed to teach web programming. This paper describes the design and evaluation of the PHP Intelligent Tutoring System (PHP ITS) which addresses this problem. The evaluation process showed that students who used the PHP ITS showed a significant improvement in test scores
Resumo:
The reliability analysis is crucial to reducing unexpected down time, severe failures and ever tightened maintenance budget of engineering assets. Hazard based reliability methods are of particular interest as hazard reflects the current health status of engineering assets and their imminent failure risks. Most existing hazard models were constructed using the statistical methods. However, these methods were established largely based on two assumptions: one is the assumption of baseline failure distributions being accurate to the population concerned and the other is the assumption of effects of covariates on hazards. These two assumptions may be difficult to achieve and therefore compromise the effectiveness of hazard models in the application. To address this issue, a non-linear hazard modelling approach is developed in this research using neural networks (NNs), resulting in neural network hazard models (NNHMs), to deal with limitations due to the two assumptions for statistical models. With the success of failure prevention effort, less failure history becomes available for reliability analysis. Involving condition data or covariates is a natural solution to this challenge. A critical issue for involving covariates in reliability analysis is that complete and consistent covariate data are often unavailable in reality due to inconsistent measuring frequencies of multiple covariates, sensor failure, and sparse intrusive measurements. This problem has not been studied adequately in current reliability applications. This research thus investigates such incomplete covariates problem in reliability analysis. Typical approaches to handling incomplete covariates have been studied to investigate their performance and effects on the reliability analysis results. Since these existing approaches could underestimate the variance in regressions and introduce extra uncertainties to reliability analysis, the developed NNHMs are extended to include handling incomplete covariates as an integral part. The extended versions of NNHMs have been validated using simulated bearing data and real data from a liquefied natural gas pump. The results demonstrate the new approach outperforms the typical incomplete covariates handling approaches. Another problem in reliability analysis is that future covariates of engineering assets are generally unavailable. In existing practices for multi-step reliability analysis, historical covariates were used to estimate the future covariates. Covariates of engineering assets, however, are often subject to substantial fluctuation due to the influence of both engineering degradation and changes in environmental settings. The commonly used covariate extrapolation methods thus would not be suitable because of the error accumulation and uncertainty propagation. To overcome this difficulty, instead of directly extrapolating covariate values, projection of covariate states is conducted in this research. The estimated covariate states and unknown covariate values in future running steps of assets constitute an incomplete covariate set which is then analysed by the extended NNHMs. A new assessment function is also proposed to evaluate risks of underestimated and overestimated reliability analysis results. A case study using field data from a paper and pulp mill has been conducted and it demonstrates that this new multi-step reliability analysis procedure is able to generate more accurate analysis results.
Resumo:
This thesis investigates the possibility of using an adaptive tutoring system for beginning programming students. The work involved, designing, developing and evaluating such a system and showing that it was effective in increasing the students’ test scores. In doing so, Artificial Intelligence techniques were used to analyse PHP programs written by students and to provide feedback based on any specific errors made by them. Methods were also included to provide students with the next best exercise to suit their particular level of knowledge.
Resumo:
Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.
Resumo:
The Smart Fields programme has been active in Shell over the last decade and has given large benefits. In order to understand the value and to underpin strategies for the future implementation programme, a study was carried out to quantify the benefits to date. This focused on actually achieved value, through increased production or lower costs. This provided an estimate of the total value achieved to date. Future benefits such as increased reserves or continued production gain were recorded separately. The paper describes the process followed in the benefits quantification. It identifies the key solutions and technologies and describes the mechanism used to understand the relation between solutions and value. Examples have been given of value from various assets around the world, in both existing fields and in green fields. Finally, the study provided the methodology for tracking of value. This helps Shell to estimate and track the benefits of the Smart Fields programme at company scale.
Resumo:
Learning programming is known to be difficult. One possible reason why students fail programming is related to the fact that traditional learning in the classroom places more emphasis on lecturing the material instead of applying the material to a real application. For some students, this teaching model may not catch their interest. As a result they may not give their best effort to understand the material given. Seeing how the knowledge can be applied to real life problems can increase student interest in learning. As a consequence, this will increase their effort to learn. Anchored learning that applies knowledge to solve real life problems may be the key to improving student performance. In anchored learning, it is necessary to provide resources that can be accessed by the student as they learn. These resources can be provided by creating an Intelligent Tutoring System (ITS) that can support the student when they need help or experience a problem. Unfortunately, there is no ITS developed for the programming domain that has incorporated anchored learning in its teaching system. Having an ITS that supports anchored learning will not only be able to help the student learn programming effectively but will also make the learning process more enjoyable. This research tries to help students learn C# programming using an anchored learning ITS named CSTutor. Role playing is used in CSTutor to present a real world situation where they develop their skills. A knowledge base using First Order Logic is used to represent the student's code and to give feedback and assistance accordingly.
Resumo:
In the legal domain, it is rare to find solutions to problems by simply applying algorithms or invoking deductive rules in some knowledge‐based program. Instead, expert practitioners often supplement domain‐specific knowledge with field experience. This type of expertise is often applied in the form of an analogy. This research proposes to combine both reasoning with precedents and reasoning with statutes and regulations in a way that will enhance the statutory interpretation task. This is being attempted through the integration of database and expert system technologies. Case‐based reasoning is being used to model legal precedents while rule‐based reasoning modules are being used to model the legislation and other types of causal knowledge. It is hoped to generalise these findings and to develop a formal methodology for integrating case‐based databases with rule‐based expert systems in the legal domain.