999 resultados para Intel 8080 (Microprocessor)
Resumo:
"UILU-ENG 79 1718."
Resumo:
Bibliography: p. 62.
Resumo:
Vita: p. 65.
Resumo:
Originally presented as the author's thesis, University of Illinois at Urbana-Champaign.
Resumo:
Vita.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
A small lathe has been modified to work under microprocessor control to enhance the facilities which the lathe offers and provide a wider operating range with relevant economic gains. The result of these modifications give better operating system characteristics. A system of electronic circuits have been developed, utilising the latest technology, to replace the pegboard with the associated obsolete electrical components. Software for the system includes control programmes for the implementation of the original pegboard operation and several sample machine code programmes are included, covering a wide spectrum of applications, including diagnostic testing of the control system. It is concluded that it is possible to carry out a low cost retrofit on existing machine tools to enhance their range of capabilities.
Resumo:
Fueled by increasing human appetite for high computing performance, semiconductor technology has now marched into the deep sub-micron era. As transistor size keeps shrinking, more and more transistors are integrated into a single chip. This has increased tremendously the power consumption and heat generation of IC chips. The rapidly growing heat dissipation greatly increases the packaging/cooling costs, and adversely affects the performance and reliability of a computing system. In addition, it also reduces the processor's life span and may even crash the entire computing system. Therefore, dynamic thermal management (DTM) is becoming a critical problem in modern computer system design. Extensive theoretical research has been conducted to study the DTM problem. However, most of them are based on theoretically idealized assumptions or simplified models. While these models and assumptions help to greatly simplify a complex problem and make it theoretically manageable, practical computer systems and applications must deal with many practical factors and details beyond these models or assumptions. The goal of our research was to develop a test platform that can be used to validate theoretical results on DTM under well-controlled conditions, to identify the limitations of existing theoretical results, and also to develop new and practical DTM techniques. This dissertation details the background and our research efforts in this endeavor. Specifically, in our research, we first developed a customized test platform based on an Intel desktop. We then tested a number of related theoretical works and examined their limitations under the practical hardware environment. With these limitations in mind, we developed a new reactive thermal management algorithm for single-core computing systems to optimize the throughput under a peak temperature constraint. We further extended our research to a multicore platform and developed an effective proactive DTM technique for throughput maximization on multicore processor based on task migration and dynamic voltage frequency scaling technique. The significance of our research lies in the fact that our research complements the current extensive theoretical research in dealing with increasingly critical thermal problems and enabling the continuous evolution of high performance computing systems.
Resumo:
The South Carolina Port LeadLine is a monthly marketing brief of the South Carolina Ports Authority.
Resumo:
The South Carolina Port LeadLine is a monthly marketing brief of the South Carolina Ports Authority.
Resumo:
The South Carolina Port LeadLine is a monthly marketing brief of the South Carolina Ports Authority.