991 resultados para Insects.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Ceylonese records namely, Euscelimena gavialis (Sauss.), Paranemobius pictus Sauss. and semiaquatic cockroaches of the genus Rhabdoblatta were found in the collection of Saltatorid and Dictyopterid insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Global Invasive Species Database, GISD, comprises 27 species of the most significant invasive alien insects in the world (through November, 2005), 6 of which are originally native to China, 11 are established in China, and 10 have a potential invasion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insects with smooth adhesive pads can rapidly enlarge their contact area by centripetal pulls on the legs, allowing them to cope with sudden mechanical perturbations such as gusts of wind or raindrops. The short time scale of this reaction excludes any neuromuscular control; it is thus more likely to be caused by mechanical properties of the pad's specialized cuticle. This soft cuticle contains numerous branched fibrils oriented almost perpendicularly to the surface. Assuming a fixed volume of the water-filled cuticle, we hypothesized that pulls could decrease the fibril angle, thereby helping the contact area to expand laterally and longitudinally. Three-dimensional fluorescence microscopy on the cuticle of smooth stick insect pads confirmed that pulls significantly reduced the fibril angle. However, the fibril angle variation appeared insufficient to explain the observed increase in contact area. Direct strain measurements in the contact zone demonstrated that pulls not only expand the cuticle laterally, but also add new contact area at the pad's outer edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal "heel" pads (euplantulae) and a pre-tarsal "toe" pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were [Formula: see text] 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised "friction pads" that produce traction when pressed against the substrate, while arolia are "true" adhesive pads that stick to the substrate when activated by pulling forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many stick insects and mantophasmids possess tarsal 'heel pads' (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of 'heel pads' changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads' use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the uses of fossil insects, particularly Coleoptera (beetles) and Chironomidae (non-biting midges) from ancient deposits to inform the study of wetland ecosystems and their ecological and restoration processes. In particular, we focus on two contrasting ecosystems, drawing upon research undertaken by us on British raised mire peats and shallow lake systems, one an essentially terrestrial ecosystem, the other aquatic, but in which wetland insects play an important and integral part. The study of raised mire peats suggests that faunal stability is a characteristic of these wetland systems, over what appear to be extensive periods of time (up to several millennia), whilst studies of shallow lake ecosystems over recent timescales indicates that faunal instability appears to be more common, usually driven by increasing eutrophication. Drawing upon a series of fossil Coleoptera records spanning several thousand years from Hatfield Moors, south Yorkshire, we reconstruct in some detail the mire’s ontogeny and fluctuations in site hydrology and vegetation cover, illustrating the intimate association between substrate, topography and peat development. A comparison between fossil and modern beetle populations indicates that the faunal characteristics of this mire and its adjacent neighbour, Thorne Moors, become established during the early phases of peat development, including its rare endemics, and that the faunal biodiversity on the sites today is dictated by complex site histories. The over-riding characteristic of these faunas is of stability over several thousand years, which has important implications for the restoration of degraded sites, especially those where refugial areas are limited. In contrast, analyses of fossil Chironomidae from shallow lakes allow researchers to track changes in limnological status and while attempts have been made to reconstruct changes in nutrient levels quantitatively, the chironomids respond indirectly to such changes, typically mediated through complex ecosystem dynamics such as changes in fish and/or macrophyte communities. These changes are illustrated via historic chironomid stratigraphies and diversity indices from a range of shallow lakes located across Britain: Slapton Ley, Frensham Great Pond, Fleet Pond, Kyre Pool and Barnes Loch. These sites have shown varying degrees of eutrophication over recent timescales which tends to be associated with a decline in chironomid diversity. While complex functional processes exist within these ecosystems, our evidence suggests that one of the key drivers in the loss of shallow lake chironomid diversity appears to be the loss of aquatic macrophytes. Overall, while chironomids do show a clear response to altered nutrient regimes, multi-proxy reconstructions are recommended for a clear interpretation of past change. We conclude that if we are to have a better understanding of biota at the ecosystem level we need to know more of the complex interactions between different insect groups as well as with other animal and plant communities. A palaeoecological approach is thus crucial in order to assess the role of insect groups in ecosystem processes, both in the recent past and over long time scales, and is essential for wetland managers and conservation organisations involved in long term management and restoration of wetland systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of fire within Pinus-mire ecosystems is explored by focusing on a palaeoentomological investigation of the extensive burnt fossil forest preserved within the basal deposits of the raised mires of Thorne and Hatfield Moors, Humberhead Levels, eastern England. Remains of charred tree macrofossils (roots, stumps and trunks) are widely distributed across both sites, mainly comprising Pinus and Betula. Evidence from this research and elsewhere suggest fires were a common event on Pinus mires, and may indicate that such episodes played an important role in the development of raised bogs. A fire-loving (pyrophilous) insect fauna appears to have been attracted to the burnt areas and the decline and extirpation in Britain of a number of pyrophilous species (e.g. Stagetus borealis Isrealsson) suggests the former importance of this type of habitat within British Pinus-mire systems. The lack of consideration given to the role of natural fires within the British landscape is questioned and the interpretation of charcoal within mire deposits as a possible anthropogenic indicator is highlighted as an area that would benefit some reconsideration.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is growing evidence that insects in high-density populations invest relatively more in pathogen resistance than those in low-density populations (i.e. density-dependent prophylaxis). Such increases in resistance are often accompanied by cuticular melanism, which is characteristic of the high-density form of many phase polyphenic insects. Both melanism and pathogen resistance involve the prophenoloxidase enzyme system. In this paper the link between resistance, melanism and phenoloxidase activity is examined in Spodoptera lanae. In S. exempta, cuticular melanism was positively correlated with phenoloxidase activity in the cuticle, haemolymph and midgut. Melanic S. exempta larvae were found to melanize a greater proportion of eggs of the ectoparasitoid Euplectrus laphygmae than non-melanic larvae, and melanic S. littoralis were more resistant to the entomopathogenic fungus Beauveria bassiana (in S. exempta the association between melanism and fungal resistance was non-signficant). These results strengthen the link between melanism and disease resistance and implicate the involvement of phenoloxidase.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insect species vary in their degree of foraging specialisation, with many bee species considered polyphagic (polylectic). Wild, non-managed bee species vary in their conservation status, and species-specific biological traits such as foraging specialisation may play an important role in determining variance in population declines. Current agri-environment schemes (AESs) prescribe the introduction of flower seed mixes for agricultural systems to aid the conservation of wild bees. However, the extent to which flower combinations adequately meet bee foraging requirements is poorly known. We quantitatively assessed pollen use and selectivity using two statistical approaches: Bailey's Intervals and Compositional Analysis, in an examplar species, a purportedly polylectic and rare bee, Colletes floralis, across 7 sites through detailed analysis of bee scopal pollen loads and flower abundance. Both approaches provided good congruence, but Compositional Analysis was more robust to small sample sizes. We advocate its use for the quantitative determination of foraging behaviour and dietary preference. Although C. floralis is polylectic, it showed a clear dietary preference for plants within the family Apiaceae. Where Apiaceae was uncommon, the species exploited alternative resources. Other plant families, such as the Apiaceae, could be included, or have their proportion increased in AES seed mixes, to aid the management of C. floralis and potentially other wild solitary bees of conservation concern. © 2011 The Authors. Insect Conservation and Diversity © 2011 The Royal Entomological Society.