726 resultados para Input Recognition
Resumo:
Automated human behaviour analysis has been, and still remains, a challenging problem. It has been dealt from different points of views: from primitive actions to human interaction recognition. This paper is focused on trajectory analysis which allows a simple high level understanding of complex human behaviour. It is proposed a novel representation method of trajectory data, called Activity Description Vector (ADV) based on the number of occurrences of a person is in a specific point of the scenario and the local movements that perform in it. The ADV is calculated for each cell of the scenario in which it is spatially sampled obtaining a cue for different clustering methods. The ADV representation has been tested as the input of several classic classifiers and compared to other approaches using CAVIAR dataset sequences obtaining great accuracy in the recognition of the behaviour of people in a Shopping Centre.
Resumo:
Human behaviour recognition has been, and still remains, a challenging problem that involves different areas of computational intelligence. The automated understanding of people activities from video sequences is an open research topic in which the computer vision and pattern recognition areas have made big efforts. In this paper, the problem is studied from a prediction point of view. We propose a novel method able to early detect behaviour using a small portion of the input, in addition to the capabilities of it to predict behaviour from new inputs. Specifically, we propose a predictive method based on a simple representation of trajectories of a person in the scene which allows a high level understanding of the global human behaviour. The representation of the trajectory is used as a descriptor of the activity of the individual. The descriptors are used as a cue of a classification stage for pattern recognition purposes. Classifiers are trained using the trajectory representation of the complete sequence. However, partial sequences are processed to evaluate the early prediction capabilities having a specific observation time of the scene. The experiments have been carried out using the three different dataset of the CAVIAR database taken into account the behaviour of an individual. Additionally, different classic classifiers have been used for experimentation in order to evaluate the robustness of the proposal. Results confirm the high accuracy of the proposal on the early recognition of people behaviours.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Recognising the laterality of a pictured hand involves making an initial decision and confirming that choice by mentally moving one's own hand to match the picture. This depends on an intact body schema. Because patients with complex regional pain syndrome type 1 (CRPS1) take longer to recognise a hand's laterality when it corresponds to their affected hand, it has been proposed that nociceptive input disrupts the body schema. However, chronic pain is associated with physiological and psychosocial complexities that may also explain the results. In three studies, we investigated whether the effect is simply due to nociceptive input. Study one evaluated the temporal and perceptual characteristics of acute hand pain elicited by intramuscular injection of hypertonic saline into the thenar eminence. In studies two and three, subjects performed a hand laterality recognition task before, during, and after acute experimental hand pain, and experimental elbow pain, respectively. During hand pain and during elbow pain, when the laterality of the pictured hand corresponded to the painful side, there was no effect on response time (RT). That suggests that nociceptive input alone is not sufficient to disrupt the working body schema. Conversely to patients with CRPS1, when the laterality of the pictured hand corresponded to the non-painful hand, RT increased similar to 380 ms (95% confidence interval 190 ms-590 ms). The results highlight the differences between acute and chronic pain and may reflect a bias in information processing in acute pain toward the affected part.
Resumo:
Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.
Resumo:
We describe a method of recognizing handwritten digits by fitting generative models that are built from deformable B-splines with Gaussian ``ink generators'' spaced along the length of the spline. The splines are adjusted using a novel elastic matching procedure based on the Expectation Maximization (EM) algorithm that maximizes the likelihood of the model generating the data. This approach has many advantages. (1) After identifying the model most likely to have generated the data, the system not only produces a classification of the digit but also a rich description of the instantiation parameters which can yield information such as the writing style. (2) During the process of explaining the image, generative models can perform recognition driven segmentation. (3) The method involves a relatively small number of parameters and hence training is relatively easy and fast. (4) Unlike many other recognition schemes it does not rely on some form of pre-normalization of input images, but can handle arbitrary scalings, translations and a limited degree of image rotation. We have demonstrated our method of fitting models to images does not get trapped in poor local minima. The main disadvantage of the method is it requires much more computation than more standard OCR techniques.
Resumo:
This paper discusses the first of three studies which collectively represent a convergence of two ongoing research agendas: (1) the empirically-based comparison of the effects of evaluation environment on mobile usability evaluation results; and (2) the effect of environment - in this case lobster fishing boats - on achievable speech-recognition accuracy. We describe, in detail, our study and outline our results to date based on preliminary analysis. Broadly speaking, the potential for effective use of speech for data collection and vessel control looks very promising - surprisingly so! We outline our ongoing analysis and further work.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
Structural analysis in handwritten mathematical expressions focuses on interpreting the recognized symbols using geometrical information such as relative sizes and positions of the symbols. Most existing approaches rely on hand-crafted grammar rules to identify semantic relationships among the recognized mathematical symbols. They could easily fail when writing errors occurred. Moreover, they assume the availability of the whole mathematical expression before being able to analyze the semantic information of the expression. To tackle these problems, we propose a progressive structural analysis (PSA) approach for dynamic recognition of handwritten mathematical expressions. The proposed PSA approach is able to provide analysis result immediately after each written input symbol. This has an advantage that users are able to detect any recognition errors immediately and correct only the mis-recognized symbols rather than the whole expression. Experiments conducted on 57 most commonly used mathematical expressions have shown that the PSA approach is able to achieve very good performance results.
Towards a web-based progressive handwriting recognition environment for mathematical problem solving
Resumo:
The emergence of pen-based mobile devices such as PDAs and tablet PCs provides a new way to input mathematical expressions to computer by using handwriting which is much more natural and efficient for entering mathematics. This paper proposes a web-based handwriting mathematics system, called WebMath, for supporting mathematical problem solving. The proposed WebMath system is based on client-server architecture. It comprises four major components: a standard web server, handwriting mathematical expression editor, computation engine and web browser with Ajax-based communicator. The handwriting mathematical expression editor adopts a progressive recognition approach for dynamic recognition of handwritten mathematical expressions. The computation engine supports mathematical functions such as algebraic simplification and factorization, and integration and differentiation. The web browser provides a user-friendly interface for accessing the system using advanced Ajax-based communication. In this paper, we describe the different components of the WebMath system and its performance analysis.
Resumo:
The research presented in this paper is part of an ongoing investigation into how best to incorporate speech-based input within mobile data collection applications. In our previous work [1], we evaluated the ability of a single speech recognition engine to support accurate, mobile, speech-based data input. Here, we build on our previous research to compare the achievable speaker-independent accuracy rates of a variety of speech recognition engines; we also consider the relative effectiveness of different speech recognition engine and microphone pairings in terms of their ability to support accurate text entry under realistic mobile conditions of use. Our intent is to provide some initial empirical data derived from mobile, user-based evaluations to support technological decisions faced by developers of mobile applications that would benefit from, or require, speech-based data entry facilities.
Resumo:
This paper discusses the first of three studies which collectively represent a convergence of two ongoing research agendas: (1) the empirically-based comparison of the effects of evaluation environment on mobile usability evaluation results; and (2) the effect of environment - in this case lobster fishing boats - on achievable speech-recognition accuracy. We describe, in detail, our study and outline our results to date based on preliminary analysis. Broadly speaking, the potential for effective use of speech for data collection and vessel control looks very promising - surprisingly so! We outline our ongoing analysis and further work.
Resumo:
In this paper, a new method for offline handwriting recognition is presented. A robust algorithm for handwriting segmentation has been described here with the help of which individual characters can be segmented from a word selected from a paragraph of handwritten text image which is given as input to the module. Then each of the segmented characters are converted into column vectors of 625 values that are later fed into the advanced neural network setup that has been designed in the form of text files. The networks has been designed with quadruple layered neural network with 625 input and 26 output neurons each corresponding to a character from a-z, the outputs of all the four networks is fed into the genetic algorithm which has been developed using the concepts of correlation, with the help of this the overall network is optimized with the help of genetic algorithm thus providing us with recognized outputs with great efficiency of 71%.
Resumo:
In this paper, we propose a speech recognition engine using hybrid model of Hidden Markov Model (HMM) and Gaussian Mixture Model (GMM). Both the models have been trained independently and the respective likelihood values have been considered jointly and input to a decision logic which provides net likelihood as the output. This hybrid model has been compared with the HMM model. Training and testing has been done by using a database of 20 Hindi words spoken by 80 different speakers. Recognition rates achieved by normal HMM are 83.5% and it gets increased to 85% by using the hybrid approach of HMM and GMM.
Resumo:
We address the problem of 3D-assisted 2D face recognition in scenarios when the input image is subject to degradations or exhibits intra-personal variations not captured by the 3D model. The proposed solution involves a novel approach to learn a subspace spanned by perturbations caused by the missing modes of variation and image degradations, using 3D face data reconstructed from 2D images rather than 3D capture. This is accomplished by modelling the difference in the texture map of the 3D aligned input and reference images. A training set of these texture maps then defines a perturbation space which can be represented using PCA bases. Assuming that the image perturbation subspace is orthogonal to the 3D face model space, then these additive components can be recovered from an unseen input image, resulting in an improved fit of the 3D face model. The linearity of the model leads to efficient fitting. Experiments show that our method achieves very competitive face recognition performance on Multi-PIE and AR databases. We also present baseline face recognition results on a new data set exhibiting combined pose and illumination variations as well as occlusion.