962 resultados para Injection molding of plastics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aiming the establishment of simple and accurate readings of citric acid (CA) in complex samples, citrate (CIT) selective electrodes with tubular configuration and polymeric membranes plus a quaternary ammonium ion exchanger were constructed. Several selective membranes were prepared for this purpose, having distinct mediator solvents (with quite different polarities) and, in some cases, p-tert-octylphenol (TOP) as additive. The latter was used regarding a possible increase in selectivity. The general working characteristics of all prepared electrodes were evaluated in a low dispersion flow injection analysis (FIA) manifold by injecting 500µl of citrate standard solutions into an ionic strength (IS) adjuster carrier (10−2 mol l−1) flowing at 3ml min−1. Good potentiometric response, with an average slope and a repeatability of 61.9mV per decade and ±0.8%, respectively, resulted from selective membranes comprising additive and bis(2-ethylhexyl)sebacate (bEHS) as mediator solvent. The same membranes conducted as well to the best selectivity characteristics, assessed by the separated solutions method and for several chemical species, such as chloride, nitrate, ascorbate, glucose, fructose and sucrose. Pharmaceutical preparations, soft drinks and beers were analyzed under conditions that enabled simultaneous pH and ionic strength adjustment (pH = 3.2; ionic strength = 10−2 mol l−1), and the attained results agreed well with the used reference method (relative error < 4%). The above experimental conditions promoted a significant increase in sensitivity of the potentiometric response, with a supra-Nernstian slope of 80.2mV per decade, and allowed the analysis of about 90 samples per hour, with a relative standard deviation <1.0%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H(2)O(2) amperometric determination in the concentration range from 0.8 mu mol L(-1) to 100 mu mol L(-1). The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 mu mol L(-1) (3 sigma). The anodic current peaks obtained after a series of 23 successive injections of 50 mu L of 25 mu mol L(-1) H(2)O(2) showed an RSD < 0.9%. To ensure the good selectivity to detect H(2)O(2), its determination was performed in a differential mode, with selective destruction of the H(2)O(2) with catalase in 10 mmol L(-1) phosphate buffer solution. Practical application of the analytical procedure involved H(2)O(2) determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed ampermetric method with another one which combines flow injection analysis (FIA) with spectrophotometric detection showed good agreement. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer light-emitting devices (PLEDs) with poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer were studied with an electron injection layer of ionomers consisting of copolymers of styrene and methylmethacrylate (PS/PMMA) with 3, 6 and 8 mol% degree of sulfonation. The ionomers were able to form very thin films over the emissive layer, with less than 30 nm. Additionally, the presence of ion pairs of ionomer suppresses the tendency toward dewetting of the thin film of ionomer (similar to 10 nm) which can cause malfunction of the device. The effect of the ionomers was investigated as a function of the ion content. The devices performance, characterized by their current density and luminance intensity versus voltage, showed a remarkable increase with the ionomer layer up to 6 mol% of ionic groups, decreasing after that for the 8 mol% ionomer device. The study of the impedance spectroscopy in the frequency range from 0.1 to 10(6) Hz showed that the injection phenomena dominate over the transport in the electroluminescent polymer bulk. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reversible intermittent pow-injection procedure is proposed for the automated determination of mercury in sediments and vinasses by cold vapor atomic absorption spectrometry, CVAAS. Solutions of sample and stannous chloride are carried by two air streams and sequentially injected into the generator/separator chamber in a segmented asynchronous merging zone configuration. The intermittent flow in the forward direction carries the mercury vapor through the flow cell, and in the backward direction, if aspirates the the remaining solution from the vessel to waste. We investigated composition and concentration of reagents, pow rates, commutation times, reactor configuration, and conditions for mercury release. The accuracy was checked by mercury determination in a certified sediment and spiked vinasses and river waters. The system handles about 100 samples per hour (0.50-5.00 mu g L-1), consuming ca. 2.5 mL of sample and 50 mg of SnCl2 per determination; Good recoveries (92-103%) were obtained with spiked samples. Results are precise (RSD <3% for 2.5 mu g Hg L-1, n = 12) and in agreement with values for certified reference material at 95% confidence level. (C) 1999 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8), reaction with Malachite green (MG) and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100%) enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC). The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 μL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2) in agreement with those obtained by an alternative procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goal of this work was to develop a simple analytical method for quantification of glycerol based on the electrocatalytic oxidation of glycerol on the copper surface adapted in a flow injection system. Under optimal experimental conditions, the peak current response increases linearly with glycerol concentration over the range 60-3200 mg kg(-1) (equivalent to 3-160 mg L(-1) in solution). The repeatability of the electrode response in the flow injection analysis (FIA) configuration was evaluated as 5% (n = 10), and the detection limit of the method was estimated to be 5 mg kg(-1) in biodiesel (equivalent to 250 mu g L(-1) in solution) (S/N = 3). The sample throughput under optimised conditions was estimated to be 90 h(-1). Different types of biodiesel samples (B100), as in the types of vegetable oils or animal fats used to produce the fuels, were analysed (seven samples). The only sample pre-treatment used was an extraction of glycerol from the biodiesel sample containing a ratio of 5 mL of water to 250 mg of biodiesel. The proposed method improves the analytical parameters obtained by other electroanalytical methods for quantification of glycerol in biodiesel samples, and its accuracy was evaluated using a spike-and-recovery assay, where all the biodiesel samples used obtained admissible values according to the Association of Official Analytical Chemists. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a new design for a paper-based electrochemical system for flow injection analysis. Capillary wicking facilitates a gravity-driven flow of buffer solution continuously through paper and nitrocellulose, from a buffer reservoir at one end of the device to a sink at the other. A difference in height between the reservoir and the sink leads to a continuous and constant flow. The nitrocellulose lies horizontally on a working electrode, which consists of a thin platinum layer deposited on a solid support. The counter and reference electrodes are strategically positioned upstream in the buffer reservoir. A simple pipetting device was developed for reliable application of (sub)microliter volumes of sample without the need of commercial micropipets; this device did not damage the nitrocellulose membrane. Demonstration of the system for the determination of the concentration of glucose in urine resulted in a noninvasive, quantitative assay that could be used for diagnosis and monitoring of diabetes. This method does not require disposable test strips, with enzyme and electrodes, that are thrown away after each measurement Because of its low cost, this system could be used in medical environments that are resource-limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of varying injection rates of a saline chaser on aortic enhancement in computed tomography (CT) angiography was determined. Single-level, dynamic CT images of a physiological flow phantom were acquired between 0 and 50 s after initiation of contrast medium injection. Four injection protocols were applied with identical contrast medium administration (150 ml injected at 5 ml/s). For baseline protocol A, no saline chaser was applied. For protocols B, C, and D, 50 ml of saline was injected at 2.5 ml/s, 5 ml/s, and 10 ml/s, respectively. Injecting the saline chaser at twice the rate as the contrast medium yielded significantly higher peak aortic enhancement values than injecting the saline at half or at the same rate as the contrast medium (P < 0.05). Average peak aortic enhancement (HU) measured 214, 214, 218, and 226 for protocols A, B, C, and D, respectively. The slower the saline-chaser injection rate, the longer the duration of 90% peak enhancement: 13.6, 12.2, and 11.7 s for protocols B, C, and D, respectively (P > 0.05). In CT angiography, saline chaser injected at twice the rate as the contrast medium leads to increased peak aortic enhancement and saline chaser injected at half the rate tends towards prolonging peak aortic enhancement plateau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: In vitro testing of vertebroplasty techniques including pulsed jet-lavage for fat and marrow removal in human cadaveric lumbar and thoracic vertebrae. OBJECTIVE: To develop jet-lavage techniques for vertebroplasty and investigate their effect on cement distribution, injection forces, and fat embolism. SUMMARY OF BACKGROUND DATA: The main complications of cement vertebroplasty are cement leakage and pulmonary fat embolism, which can have fatal consequences and are difficult to prevent reliably by current vertebroplasty techniques. METHODS: Twenty-four vertebrae (Th8-L04) from 5 osteoporotic cadaver spines were grouped in triplets depending on bone mineral density (BMD). Before polymethylmethacrylate (PMMA) vertebroplasty, a pulsatile jet-lavage for removal of intertrabecular fat and bone marrow was performed in 2 groups with 8 specimens each, performing radial and axial irrigation from the biopsy needles. One hundred mL of Ringer solution were injected through 1 pedicle and regained by low vacuum via the contralateral pedicle. Eight control vertebrae were not irrigated. All specimens underwent standardized PMMA cement augmentation injecting 20% of the vertebral volume. Injection forces, cement distribution, and extravasations were quantified. RESULTS: All irrigation solution could be retrieved with the vacuum applied. A Kruskal-Wallis test revealed significantly higher injection forces of the control group as compared with the irrigated groups (P = 0.021). Dilatation of the syringe at forces above 300 N occurred in 75% of the untreated compared with 12.5% of the lavaged specimens. CT distribution analysis showed more homogenous cement distribution of the cement and significantly less extravasation in the irrigated specimens. CONCLUSION: The developed lavage technique for vertebroplasty showed to be feasible and reproducible. The reduction of injection forces would allow the use of more viscous PMMA cement lowering the risk for cement embolization and results in a safer procedure. The wash-out of bone marrow and the possible reduction of pulmonary fat embolism have to be verified with in vivo models.