972 resultados para Infrared Thermography
Resumo:
BACKGROUND Most European birds of prey find themselves in a poor state of conservation, with electrocution as one of the most frequent causes of unnatural death. Since early detection of electrocution is difficult, treatment is usually implemented late, which reduces its effectiveness. By considering that electrocution reduces tissue temperature, it may be detectable by thermography, which would allow a more rapid identification. Three individuals from three endangered raptor species [Spanish imperial eagle (Aquila adalberti), Lammergeier (Gypaetus barbatus) and Osprey (Pandion haliaetus)] were studied thermographically from the time they were admitted to a rehabilitation centre to the time their clinical cases were resolved. CASES PRESENTATION The three raptors presented lesions lacking thermal bilateral symmetry and were consistent with electrocution of feet, wings and eyes, visible by thermography before than clinically; lesions were well-defined and showed a lower temperature than the surrounding tissue. Some lesions evolved thermally and clinically until the appearance of normal tissue recovered, while others evolved and became necrotic. A histopathological analysis of a damaged finger amputated off a Lammergeier, and the necropsy and histopathology examination of an osprey, confirmed the electrocution diagnosis. CONCLUSIONS These results suggest that thermography is effective and useful for the objective and early detection and monitoring of electrocuted birds, and that it may prove especially useful for examining live animals that require no amputation or cannot be subjected to invasive histopathology.
Resumo:
The aim of this study was to correlate the testicular surface temperature with rectal temperature and semen quality in rams of different genotypic groups.
Resumo:
Temporomandibular disorders (TMD) consist of a group of pathologies that affect the masticatory muscles, temporomandibular joints (TMJ), and/or related structures. String instrumentalists, like many orchestra musicians, can spend hours with head postures that may influence the biomechanical behavior of the TMJ and the muscles of the craniocervicomandibular complex (CCMC). The adoption of abnormal postures acquired during performance by musicians can lead to muscular hyperactivity of the head and cervical muscles, with the possible appearance of TMD. Medical infrared thermography is a non-invasive procedure that can monitor the changes in the superficial tissue related to blood circulation and may serve as a complement to the clinical examination. The objective of this study was to use infrared thermography to evaluate, in one subject, the cutaneous thermal changes adjacent to the CCMC that occur before, during, and after playing a string instrument.
Resumo:
The Iowa Department of Transportation is responsible for maintaining approximately 3800 bridges throughout the State. Of these bridges approximately 3200 have concrete decks. The remaining bridges have been constructed or repaired with a Portland Cement (P. C.) concrete overlay. Surveys of the overlays have indicated a growing incidence of delaminations and surface distress. The need to replace or repair the overlay may be dictated by the amount of delamination in the deck. Additionally, the concrete bridges are periodically inspected and scheduled for the appropriate rehabilitation. Part of this analysis is an assessment of the amount of delamination present in the deck. The ability to accurately and economically identify delamination in overlays and bridge decks is necessary to cost-effectively evaluate and schedule bridge rehabilitation. There are two conventional methods currently being used to detect delaminations. One is ref erred to as a chain drag method. The other a electro-mechanical sounding method (delamtect). In the chain drag method, the concrete surface is struck using a heavy chain. The inspector then listens to the sound produced as the surface is struck. The delaminated areas produce a dull sound as compared to nondelaminated areas. This procedure has proved to be very time consuming, especially when a number of small areas of delamination are present. With the · electro-mechanical method, the judgement of the inspector has been eliminated. A· device with three basic components, a tapping device, a sonic receiver, and a system of signal interpretation has been developed. This· device is wheeled along the deck and the instrument receives and interprets the acoustic signals generated by the instrument which in turn are reflected through the concrete. A recently developed method of detecting delaminations is infrared thermography. This method of detection is based on the difference in surface temperature which exists between delaminated and nondelaminated concrete under certain atmospheric conditions. The temperature difference can reach 5°C on a very sunny day where dry pavement exists. If clouds are present, or the pavement is wet, then the temperature difference between the delaminated and nondelaminated concrete will not be as great and therefore more difficult to detect. Infrared thermography was used to detect delaminations in 17 concrete bridge decks, 2 P. C. concrete overlays, and 1 section of continuously reinforced concrete pavement (CRCP) in Iowa. Thermography was selected to assess the accuracy, dependability, and potential of the infrared thermographic technique.
Resumo:
Rolling Contact Fatigue (RCF) is one of the main issues that concern, at least initially, the head of the railway; progressively they can be of very high importance as they can propagate inside the material with the risk of damaging the railway. In this work, two different non-destructive techniques, infrared thermography (IRT) and fibre optics microscopy (FOM), were used in the inspection of railways for the tracing of defects and deterioration signs. In the first instance, two different approaches (dynamic and pulsed thermography) were used, whilst in the case of FOM, microscopic characterisation of the railway heads and classification of the deterioration -- damage on the railways according to the UIC (International Union of Railways) code, took place. Results from both techniques are presented and discussed.
Resumo:
The process of spermatic division and differentiation (spermatogenesis) occurs with intratesticular temperature lower that the corporal temperature and for that is essential that the testicular thermoregulation mechanism occurs properly. For evaluation of the scrotal surface temperature can be used the infrared thermography or testicular sensors, besides that, can be evaluated the blood flux in the spermatic cord through the Doppler ultrasonography. Therefore the objective of this study was the evaluation of the scrotal thermography and Doppler flowmetry of the testicular artery of buffaloes subjected to environmental heat stress. For that were used seven healthy buffaloes, with age of 3 and 4 years, of the Murrah breed. For the surface scrotal temperature measurement (SST, degrees C) and superficial neck temperature (SNT, degrees C) was used the infrared termography (Infra Cam (TM) of the brand FLIR Systems Inc.), then Doppler flowmetry of the testicular artery in the region of the spermatic cord through the ultrasonography (Mylab 5, Esaote (R)) and measurement of the rectal temperature (RT, degrees C). The evaluations were done in two moments: moment 1 (M1) with all the animals in the shade (Temperature=32,2 degrees C) and moment 2 (M2) after 3 hours of exposure of animals to the sun (Temperature=38,7 degrees C To calculate the resistivity index (RI) and pulsatility index (PI), spectra were obtained from pulsed Doppler in three random regions of the testicular artery in the spermatic cord. Data were subjected to analysis of variance (ANOVA) followed by T test, using a significance level of 5%. There was an increase (p<0,05) of RT (37,4 +/- 0,4(a) vs 39,0 +/- 0,3(b); M1 and M2 respectively), SST (30,6 +/- 1,4(a) vs 35,2,0 +/- 1,0(b); M1 and M2 respectively) and SNT (33,1 +/- 2,5(a) vs 38,5,0 +/- 0,3(b); M1 e M2 respectively) e RI (0,67 +/- 0,1(a) vs 0,74 +/- 0,1(b); M1 e M2 respectively) in M2. Increasing trend was observed (0,05>p>0,01) in PI (1,10 +/- 0,4(a) vs 1,23 +/- 0,2(b); M1 and M2 respectively) in M2. The results of the present study allow us to conclude the healthy buffaloes have the scrotal average surface temperature 3 degrees C lower that the body temperature and that the exposure of 3 hours to sun in healthy buffaloes causes thermal stress to the animals and changes in its surface scrotal temperature, and the Doppler flowmetry of the testicular artery demonstrating the importance of thermal management for breeding buffaloes. Besides that, the thermography and the Doppler ultrasonography presented great potential to detect changes of testicular perfusion, being a promising additional test in the buffalo andrological evaluation.
Resumo:
The technical improvement and new applications of Infrared Thermography (IRT) with healthy subjects should be accompanied by results about the reproducibility of IRT measurements in different popula-tion groups. In addition, there is a remarkable necessity of a larger supply on software to analyze IRT images of human beings. Therefore, the objectives of this study were: firstly, to investigate the reproducibility of skin temperature (Tsk) on overweight and obese subjects using IRT in different Regions of Interest (ROI), moments and side-to-side differences (?T); and secondly, to check the reliability of a new software called Termotracker®, specialized on the analysis of IRT images of human beings. Methods: 22 overweight and obese males (11) and females (11) (age: 41,51±7,76 years; height: 1,65±0,09 m; weight: 82,41±11,81 Kg; BMI: 30,17±2,58 kg/m²) were assessed in two consecutive thermograms (5 seconds in-between) by the same observer, using an infrared camera (FLIR T335, Sweden) to get 4 IRT images from the whole body. 11 ROI were selected using Termotracker® to analyze its reproducibility and reliability through Intra-class Correlation Coefficient (ICC) and Coefficient of Variation (CV) values. Results: The reproducibility of the side-to-side differences (?T) between two consecutive thermograms was very high in all ROIs (Mean ICC = 0,989), and excellent between two computers (Mean ICC = 0,998). The re-liability of the software was very high in all the ROIs (Mean ICC = 0,999). Intraexaminer reliability analysing the same subjects in two consecutive thermograms was also very high (Mean ICC = 0,997). CV values of the different ROIs were around 2%. Conclusions: Skin temperature on overweight subjects had an excellent reproducibility for consecutive ther-mograms. The reproducibility of thermal asymmetries (?T) was also good but it had the influence of several factors that should be further investigated. Termotracker® reached excellent reliability results and it is a relia-ble and objective software to analyse IRT images of humans beings.
Resumo:
The main objectives of this research are (i) to determine the correct use of infrared thermography in the energy analysis of buildings and to verify its application in conducting energy audits thereof; (ii) to conduct a proposal for a standard methodology (with its corresponding final report) for energy audit of buildings based on currently applicable regulations, specifying the parts of the audit process where the authors propose to include thermal inspections by using infrared thermography.
Resumo:
With the increasing importance given to building rehabilitation comes the need to create simple, fast and non-destructive testing methods (NDT) to identify problems and for anomaly diagnosis. Ceramic tiles are one of the most typical kinds of exterior wall cladding in several countries; the earliest known examples are Egyptian dating from 4000 BC. This type of building facade coating, though being quite often used in due to its aesthetic and architectural characteristics, is one of the most complex that can be applied given the several parts from which it is composed; hence, it is also one of the most difficult to correctly diagnose with expeditious methods. The detachment of ceramic wall tiles is probably the most common and difficult to identify anomaly associated with this kind of cladding and it is also definitely the one that can compromise security the most. Thus, it is necessary to study a process of inspection more efficient and economic than the currently used which often consist in semi-destructive methods (the most common is the pull off test), that can only be used in a small part of the building at a time, allowing some assumptions of what can the rest of the cladding be like. Infrared thermography (IRT) is a NDT with a wide variety of applications in building inspection that is becoming commonly used to identify anomalies related with thermal variations in the inspected surfaces. Few authors have studied the application of IRT in anomalies associated with ceramic claddings claiming that the presence of air or water beneath the superficial layer will influence the heat transfer in a way that can be detected in both a qualitative and a quantitative way by the thermal camera, providing information about the state of the wall in a much broad area per trial than other methods commonly used nowadays. This article intends to present a review of the state of art of this NDT and its potentiality in becoming a more efficient way to diagnose anomalies in ceramic wall claddings.
Resumo:
Objective: To investigate the effect of therapeutic infrared class 3B laser irradiation on skin temperature in healthy participants of differing skin color, age, and gender. Background: Little is known about the potential thermal effects of Low Level Laser Therapy (LLLT) irradiation on human skin. Methods: Skin temperature was measured in 40 healthy volunteers with a thermographic camera at laser irradiated and control (non-irradiated) areas on the skin. Six irradiation doses (2-12 J) were delivered from a 200mW, 810nm laser and a 60mW, 904nm laser, respectively. Results: Thermal effects of therapeutic LLLT using doses recommended in the World Association for Laser Therapy (WALT) guidelines were insignificant; below 1.5 degrees C in light, medium, and dark skin. When higher irradiation doses were used, the 60mW, 904 nm laser produced significantly (p < 0.01) higher temperatures in dark skin (5.7, SD +/- 1.8 degrees C at 12 J) than in light skin, although no participants requested termination of LLLT. However, irradiation with a 200mW, 810nm laser induced three to six times more heat in dark skin than in the other skin color groups. Eight of 13 participants with dark skin asked for LLLT to be stopped because of uncomfortable heating. The maximal increase in skin temperature was 22.3 degrees C. Conclusions: The thermal effects of LLLT at doses recommended by WALT-guidelines for musculoskeletal and inflammatory conditions are negligible (< 1.5 degrees C) in light, medium, and dark skin. However, higher LLLT doses delivered with a strong 3B laser (200mW) are capable of increasing skin temperature significantly and these photothermal effects may exceed the thermal pain threshold for humans with dark skin color.
Resumo:
A civilização contemporânea, pelas suas características, é muito exigente em tudo o que diz respeito ao conforto dos edifícios, para trabalho ou habitação, e à necessidade de economizar e racionalizar o uso de energia. A térmica dos edifícios assume, por isso, uma importância acrescida na atividade profissional e no ensino. Para se conduzir ao aperfeiçoamento de soluções na envolvente dos edifícios a este nível, o trabalho aqui realizado centrou-se no estudo do funcionamento da termografia de infravermelhos e da importância da sua utilização na inspeção térmica de edifícios. Descoberta no início do século XIX e desenvolvendo os primeiros sistemas operativos desde a 1ª Guerra Mundial, a fim de determinar heterogeneidades de temperatura superficial, esta técnica não destrutiva permite identificar anomalias que não são visualizadas a olho nu. Com a análise dessas variações de temperatura é possível conhecer os problemas e a localização de irregularidades. Este trabalho baseia-se substancialmente no estudo de edifícios. A análise realizada teve como finalidade executar inspeções termográficas – visuais, com duas abordagens. Por um lado, avaliar salas pertencentes a estabelecimentos de ensino secundário, reabilitadas e não reabilitadas, todas construídas entre as décadas de 60 e 90, com o intuito de diagnosticar patologias construtivas, recorrendo à termografia. Por outro, a análise de edifícios de habitação, com a intenção de avaliar a necessidade de um equipamento complementar às inspeções termográficas – o sistema de porta ventiladora. As inspeções foram regidas pelas diretrizes da norma europeia EN 13187. A termografia é uma técnica importante na realização de ensaios in situ que requerem rapidez de execução, aliada à vantagem de disponibilizar resultados em tempo real, permitindo assim uma primeira análise das leituras no local. A inspeção termográfica complementada com o sistema de porta ventiladora permitiu, também, revelar a importância da necessidade de meios auxiliares em certos casos. A conjugação destas diferentes técnicas permite reduzir a subjetividade da análise in situ e aumentar a fiabilidade do diagnóstico.
Resumo:
The purpose of this research was to summarize existing nondestructive test methods that have the potential to be used to detect materials-related distress (MRD) in concrete pavements. The various nondestructive test methods were then subjected to selection criteria that helped to reduce the size of the list so that specific techniques could be investigated in more detail. The main test methods that were determined to be applicable to this study included two stress-wave propagation techniques (impact-echo and spectral analysis of surface waves techniques), infrared thermography, ground penetrating radar (GPR), and visual inspection. The GPR technique was selected for a preliminary round of “proof of concept” trials. GPR surveys were carried out over a variety of portland cement concrete pavements for this study using two different systems. One of the systems was a state-of-the-art GPR system that allowed data to be collected at highway speeds. The other system was a less sophisticated system that was commercially available. Surveys conducted with both sets of equipment have produced test results capable of identifying subsurface distress in two of the three sites that exhibited internal cracking due to MRD. Both systems failed to detect distress in a single pavement that exhibited extensive cracking. Both systems correctly indicated that the control pavement exhibited negligible evidence of distress. The initial positive results presented here indicate that a more thorough study (incorporating refinements to the system, data collection, and analysis) is needed. Improvements in the results will be dependent upon defining the optimum number and arrangement of GPR antennas to detect the most common problems in Iowa pavements. In addition, refining highfrequency antenna response characteristics will be a crucial step toward providing an optimum GPR system for detecting materialsrelated distress.
Resumo:
Tämä insinöörityö tehtiin Helsingin ammattikorkeakoulu Stadian Rakennustekniikan koulutusohjelmalle. Helsingin ammattikorkeakoulu Stadia on yksi Suomen suurimmista ammattikorkeakouluista, jonka opiskelijat ovat valmistuessaan alansa asiantuntijoita. Työn tavoitteena oli kehittää Rakennustekniikan koulutusohjelman tuottamia lämpökuvauspalveluja. Työssä selvitettiin, mitkä ovat lämpökuvauspalvelujen kehittämiskohteet ja mihin kehittämistoimenpiteisiin tulisi ryhtyä, jotta palvelujen menestyksekäs tuottaminen tulevaisuudessa varmistetaan. Työ aloitettiin perehtymällä palvelujen johtamisen ja kehittämisen menetelmiin sekä lämpökuvaamisen teknologiaan ja perusteisiin. Lämpökuvauspalvelujen kehittämismenetelmäksi valittiin palveluprosessin kuvaaminen ja siihen kytkeytyvän teknologian, osaamisen ja asiakassuhteiden kehittäminen. Työssä laadittiin seuraavaksi prosessikuvaus lämpökuvauspalveluille, määritettiin prosessiin kytkeytyvä teknologia ja osaaminen sekä kuvattiin palvelun asiakassuhteiden hoitomalli. Kuvausten perusteella kartoitettiin keskeiset kehittämiskohteet ja arvioitiin kehittämismahdollisuuksia. Työn lopputuloksena syntyi lämpökuvauspalvelujen prosessikuvaus sekä toimenpidesuositukset kehittämistoimenpiteistä. Keskeisinä suosituksina kehittämistoimenpiteiksi esitetään panostamista ajantasaiseen lämpökuvausteknologiaan hankkimalla uusi lämpökamera, palveluhenkilöstön osaamisen kehittämistä valmennuksia hyödyntäen sekä systemaattista asiakassuhteiden hoitoa ryhtymällä perusmarkkinointitoimenpiteisiin. Jatkotutkimuskohteeksi ehdotetaan selvitystä Rakennustekniikan koulutusohjelman lämpökuvauslaboratorion perustamismahdollisuuksista.
Resumo:
After hatching, pullets are transported to brooding area and vaccinated. One day old chicks have not already developed thermoregulation ability; thus, brooding temperature variations may affect pullet quality leading to broiler meat production losses. This research aimed to calculate sensible heat loss in one day old pullets in hatching area and vaccination room. Ten one day old pullets were randomly selected from hatching area of a commercial hatchery. Infrared images were used to calculate bird surface temperature. Exposure areas for the two conditions were quantified, and both air temperature and wind speed was recorded. Total sensible heat loss was calculated as heat loss by radiation plus heat loss by convection. It was found that heat transfer occurs in different ways at different bird body parts. Total heat loss found for hatching baskets was equivalent to 0.81 J s-1 while for vaccination room was 1.16 J s-1. Pullet nutrition is based on energy loss from brooding to farm, and the overall pullet heat loss from hatchery to farm accepted is 13.95 J s-1. Thus, "starter feed" has relevant excess of energy input. These findings indicate that less energy can be used in initial feed, once heat loss is lower than assumed nowadays. Improved knowledge on these conditions may enhance broiler farm feeding strategies and economics during first rearing week.