908 resultados para Influenza-virus
Resumo:
Directed release of human immunodeficiency virus type 1 (HIV-1) into the cleft of the virological synapse that can form between infected and uninfected T cells, for example, in lymph nodes, is thought to contribute to the systemic spread of this virus. In contrast, influenza virus, which causes local infections, is shed into the airways of the respiratory tract from free surfaces of epithelial cells. We now demonstrate that such differential release of HIV-1 and influenza virus is paralleled, at the subcellular level, by viral assembly at different microsegments of the plasma membrane of HeLa cells. HIV-1, but not influenza virus, buds through microdomains containing the tetraspanins CD9 and CD63. Consequently, the anti-CD9 antibody K41, which redistributes its antigen and also other tetraspanins to cell-cell adhesion sites, interferes with HIV-1 but not with influenza virus release. Altogether, these data strongly suggest that the bimodal egress of these two pathogenic viruses, like their entry into target cells, is guided by specific sets of host cell proteins.
Resumo:
Mononuclear phagocytes have been attributed a crucial role in the host defense toward influenza virus (IV), but their contribution to influenza-induced lung failure is incompletely understood. We demonstrate for the first time that lung-recruited "exudate" macrophages significantly contribute to alveolar epithelial cell (AEC) apoptosis by the release of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a murine model of influenza-induced pneumonia. Using CC-chemokine receptor 2-deficient (CCR2(-/-)) mice characterized by defective inflammatory macrophage recruitment, and blocking anti-CCR2 antibodies, we show that exudate macrophage accumulation in the lungs of influenza-infected mice is associated with pronounced AEC apoptosis and increased lung leakage and mortality. Among several proapoptotic mediators analyzed, TRAIL messenger RNA was found to be markedly up-regulated in alveolar exudate macrophages as compared with peripheral blood monocytes. Moreover, among the different alveolar-recruited leukocyte subsets, TRAIL protein was predominantly expressed on macrophages. Finally, abrogation of TRAIL signaling in exudate macrophages resulted in significantly reduced AEC apoptosis, attenuated lung leakage, and increased survival upon IV infection. Collectively, these findings demonstrate a key role for exudate macrophages in the induction of alveolar leakage and mortality in IV pneumonia. Epithelial cell apoptosis induced by TRAIL-expressing macrophages is identified as a major underlying mechanism.
Resumo:
Equine influenza virus (EIV) surveillance is important in the management of equine influenza. It provides data on circulating and newly emerging strains for vaccine strain selection. To this end, antigenic characterisation by haemaggluttination inhibition (HI) assay and phylogenetic analysis was carried out on 28 EIV strains isolated in North America and Europe during 2006 and 2007. In the UK, 20 viruses were isolated from 28 nasopharyngeal swabs that tested positive by enzyme-linked immunosorbent assay. All except two of the UK viruses were characterised as members of the Florida sublineage with similarity to A/eq/Newmarket/5/03 (clade 2). One isolate, A/eq/Cheshire/1/06, was characterised as an American lineage strain similar to viruses isolated up to 10 years earlier. A second isolate, A/eq/Lincolnshire/1/07 was characterised as a member of the Florida sublineage (clade 1) with similarity to A/eq/Wisconsin/03. Furthermore, A/eq/Lincolnshire/1/06 was a member of the Florida sublineage (clade 2) by haemagglutinin (HA) gene sequence, but appeared to be a member of the Eurasian lineage by the non-structural gene (NS) sequence suggesting that reassortment had occurred. A/eq/Switzerland/P112/07 was characterised as a member of the Eurasian lineage, the first time since 2005 that isolation of a virus from this lineage has been reported. Seven viruses from North America were classified as members of the Florida sublineage (clade 1), similar to A/eq/Wisconsin/03. In conclusion, a variety of antigenically distinct EIVs continue to circulate worldwide. Florida sublineage clade 1 viruses appear to predominate in North America, clade 2 viruses in Europe.
Resumo:
In 2012, the complete genomic sequence of a new and potentially harmful influenza A-like virus from bats (H17N10) was identified. However, infectious influenza virus was neither isolated from infected bats nor reconstituted, impeding further characterization of this virus. Here we show the generation of an infectious chimeric virus containing six out of the eight bat virus genes, with the remaining two genes encoding the haemagglutinin and neuraminidase proteins of a prototypic influenza A virus. This engineered virus replicates well in a broad range of mammalian cell cultures, human primary airway epithelial cells and mice, but poorly in avian cells and chicken embryos without further adaptation. Importantly, the bat chimeric virus is unable to reassort with other influenza A viruses. Although our data do not exclude the possibility of zoonotic transmission of bat influenza viruses into the human population, they indicate that multiple barriers exist that makes this an unlikely event.
Resumo:
The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.
Resumo:
The polymerase (PB2) and nucleocapsid (NP) genes encoded by the genome of influenza virus are essential for replication of the virus. When synthetic genes that express RNAs for external guide sequences targeted to the mRNAs of the PB2 and NP genes are stably incorporated into mouse cells in tissue culture, infection of these cells with influenza virus is nonproductive. Endogenous RNase P cleaves the targeted influenza virus mRNAs when they are in a complex with the external guide sequences. Targeting two different mRNAs simultaneously inhibits viral particle production more efficiently than does targeting only one mRNA.
Resumo:
The x-ray structure of a complex of sialic acid (Neu5Ac) with neuraminidase N9 subtype from A/tern/Australia/G70C/75 influenza virus at 4°C has revealed the location of a second Neu5Ac binding site on the surface of the enzyme. At 18°C, only the enzyme active site contains bound Neu5Ac. Neu5Ac binds in the second site in the chair conformation in a similar way to which it binds to hemagglutinin. The residues that interact with Neu5Ac at this second site are mostly conserved in avian strains, but not in human and swine strains, indicating that it has some as-yet-unknown biological function in birds.
Resumo:
The influenza A virus M2 integral membrane protein is an ion channel that permits protons to enter virus particles during uncoating of virions in endosomes and also modulates the pH of the trans-Golgi network in virus-infected cells. The M2 protein is a homo-oligomer of 97 residues, and analysis by chemical cross-linking and SDS/PAGE indicates M2 forms a tetramer. However, a higher order molecular form is sometimes observed and, thus, it is necessary to determine the active form of the molecule. This was done by studying the currents of oocytes that expressed mixtures of the wild-type M2 protein (epitope tagged) and the mutant protein M2-V27S, which is resistant to the inhibitor amantadine. The composition of mixed oligomers of the two proteins expressed at the plasma membrane of individual oocytes was quantified after antibody capture of the cell surface expressed molecules and it was found that the subunits mixed freely. When the ratio of wild-type to mutant protein subunits was 0.85:0.15, the amantadine sensitivity was reduced to 50% and for a ratio of 0.71:0.29 to 20%. These results are consistent with the amantadine-resistant mutant being dominant and the oligomeric state being a tetramer.
Resumo:
The amino acid sequence requirements of the transmembrane (TM) domain and cytoplasmic tail (CT) of the hemagglutinin (HA) of influenza virus in membrane fusion have been investigated. Fusion properties of wild-type HA were compared with those of chimeras consisting of the ectodomain of HA and the TM domain and/or CT of polyimmunoglobulin receptor, a nonviral integral membrane protein. The presence of a CT was not required for fusion. But when a TM domain and CT were present, fusion activity was greater when they were derived from the same protein than derived from different proteins. In fact, the chimera with a TM domain of HA and truncated CT of polyimmunoglobulin receptor did not support full fusion, indicating that the two regions are not functionally independent. Despite the fact that there is wide latitude in the sequence of the TM domain that supports fusion, a point mutation of a semiconserved residue within the TM domain of HA inhibited fusion. The ability of a foreign TM domain to support fusion contradicts the hypothesis that a pore is composed solely of fusion proteins and supports the theory that the TM domain creates fusion pores after a stage of hemifusion has been achieved.
Resumo:
“Natural” Igs, mainly IgM, comprise part of the innate immune system present in healthy individuals, including antigen-free mice. These Igs are thought to delay pathogenicity of infecting agents until antigen-induced high affinity Igs of all isotypes are produced. Previous studies suggested that the acquired humoral response arises directly from the innate response, i.e., that B cells expressing natural IgM, upon antigen encounter, differentiate to give rise both to cells that secrete high amounts of IgM and to cells that undergo affinity maturation and isotype switching. However, by using a murine model of influenza virus infection, we demonstrate here that the B cells that produce natural antiviral IgM neither increase their IgM production nor undergo isotype switching to IgG2a in response to the infection. These cells are distinct from the B cells that produce the antiviral response after encounter with the pathogen. Our data therefore demonstrate that the innate and the acquired humoral immunities to influenza virus are separate effector arms of the immune system and that antigen exposure per se is not sufficient to increase natural antibody production.
Resumo:
Many pathogens causing diarrhea do so by modulating ion transport in the gut. Respiratory pathogens are similarly associated with disturbances of fluid balance in the respiratory tract, although it is not known whether they too act by altering epithelial ion transport. Here we show that influenza virus A/PR/8/34 inhibits the amiloride-sensitive Na+ current across mouse tracheal epithelium with a half-time of about 60 min. We further show that the inhibitory effect of the influenza virus is caused by the binding of viral hemagglutinin to a cell-surface receptor, which then activates phospholipase C and protein kinase C. Given the importance of epithelial Na+ channels in controlling the amount of fluid in the respiratory tract, we suggest that down-regulation of Na+ channels induced by influenza virus may play a role in the fluid transport abnormalities that are associated with influenza infections.
Resumo:
The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.
Resumo:
The MAL proteolipid, a component of the integral protein sorting machinery, has been demonstrated as being necessary for normal apical transport of the influenza virus hemagglutinin (HA) and the overall apical membrane proteins in Madin-Darby canine kidney (MDCK) cells. The MAL carboxy terminus ends with the sequence Arg-Trp-Lys-Ser-Ser (RWKSS), which resembles dilysine-based motifs involved in protein sorting. To investigate whether the RWKSS pentapeptide plays a role in modulating the distribution of MAL and/or its function in apical transport, we have expressed MAL proteins with distinct carboxy terminus in MDCK cells whose apical transport was impaired by depletion of endogenous MAL. Apical transport of HA was restored to normal levels by expression of MAL with an intact but not with modified carboxyl terminal sequences bearing mutations that impair the functioning of dilysine-based sorting signals, although all the MAL proteins analyzed incorporated efficiently into lipid rafts. Ultrastructural analysis indicated that compared with MAL bearing an intact RWKSS sequence, a mutant with lysine −3 substituted by serine showed a twofold increased presence in clathrin-coated cytoplasmic structures and a reduced expression on the plasma membrane. These results indicate that the carboxyl-terminal RWKSS sequence modulates the distribution of MAL in clathrin-coated elements and is necessary for HA transport to the apical surface.
New approach for inhibiting Rev function and HIV-1 production using the influenza virus NS1 protein.
Resumo:
The Rev protein of HIV-1, which facilitates the nuclear export of HIV-1 pre-mRNAs, has been a target for antiviral therapy. Here we describe a new strategy for inhibiting Rev function and HIV-1 replication. In contrast to previous approaches, we use a wild-type rather than a mutant Rev protein and covalently link this Rev sequence to the NS1 protein of influenza A virus, a protein that inhibits the nuclear export of mRNAs. The NS1 protein contains an RNA-binding domain mutation (RM), so that the only functional RNA-binding domain in the chimeric protein (NS1RM-Rev) is in the Rev protein sequence. In the presence of the NS1RM-Rev chimeric protein, HIV-1 pre-mRNAs were retained in, rather than exported from, the nucleus. In addition, this chimeric protein effectively inhibited Rev function in trans in transfection experiments and effectively inhibited the production of HIV-1 in tissue culture cells transfected with an infectious molecular clone of HIV-1 DNA. The inhibitory activities of the NS1RM-Rev chimera were at least equivalent to those of the Rev M10 mutant protein, which has been considered to be the prototype trans inhibitor of Rev function and is currently in phase I clinical trials for the treatment of AIDS patients. We discuss (i) the potential for increasing the inhibitory activity of NS1-Rev chimeras against HIV-1 and (ii) the need for additional studies to evaluate these chimeras for the treatment of AIDS.