927 resultados para Influenza A virus
Resumo:
Streptococcus suis serotype 2 is an important swine bacterial pathogen, and it is also an emerging zoonotic agent. It is unknown how S. suis virulent strains, which are usually found in low quantities in pig tonsils, manage to cross the first host defense lines to initiate systemic disease. Influenza virus produces a contagious infection in pigs which is frequently complicated by bacterial coinfections, leading to significant economic impacts. In this study, the effect of a preceding swine influenza H1N1 virus (swH1N1) infection of swine tracheal epithelial cells (NTPr) on the ability of S. suis serotype 2 to adhere to, invade, and activate these cells was evaluated. Cells preinfected with swH1N1 showed bacterial adhesion and invasion levels that were increased more than 100-fold compared to those of normal cells. Inhibition studies confirmed that the capsular sialic acid moiety is responsible for the binding to virus-infected cell surfaces. Also, preincubation of S. suis with swH1N1 significantly increased bacterial adhesion to/invasion of epithelial cells, suggesting that S. suis also uses swH1N1 as a vehicle to invade epithelial cells when the two infections occur simultaneously. Influenza virus infection may facilitate the transient passage of S. suis at the respiratory tract to reach the bloodstream and cause bacteremia and septicemia. S. suis may also increase the local inflammation at the respiratory tract during influenza infection, as suggested by an exacerbated expression of proinflammatory mediators in coinfected cells. These results give new insight into the complex interactions between influenza virus and S. suis in a coinfection model.
Resumo:
La influenza es una entidad clínica, que es causada por los virus de la influenza A, B y C del género Influenza. El virus de la influenza A se clasifica en subtipos, con base en 2 antígenos de superficie: la hemaglutinina y la neuraminidasa. La respuesta inmune frente a estos antígenos (especialmente frente a la hemaglutinina), disminuye la probabilidad de infección, así como la severidad del cuadro clínico. La intención de este trabajo es describir el funcionamiento del programa de vigilancia centinela de influenza y otros virus respiratorios en Colombia, que permite identificar en que medida se alcanza la finalidad de esta actividad y que dificultades en general afectan su funcionamiento.
Resumo:
EQUINE influenza A virus (EIV) is a highly infectious respiratory pathogen of horses (Hannant and Mumford 1996, Palese and Shaw 2007). The illness is characterized by an abrupt onset of fever, depression, coughing and nasal discharge, and is often complicated by secondary bacterial infections that can lead to pneumonia and death. Two subtypes of EIV, H3N8 and H7N7, have been isolated. The H7N7 subtype was first isolated from a horse in Czechoslovakia in 1956 (Prague/56), and the H3N8 subtype was first isolated from a horse in Miami in 1963 (Sovinova and others 1958, Waddell and others 1963). The last confirmed outbreak of H7N7 occurred in 1979, and this subtype is now considered to be either extinct or circulating at low levels in a few geographical areas (Ismail and others 1990, Webster 1993, Singh 1994, Madic and others 1996, van Maanen and Cullinane 2002). The H3N8 subtype is a common cause of disease in horses worldwide, particularly in areas where vaccination is not routinely performed (Paillot and others 2006).
Resumo:
The influenza A virus M2 integral membrane protein is an ion channel that permits protons to enter virus particles during uncoating of virions in endosomes and also modulates the pH of the trans-Golgi network in virus-infected cells. The M2 protein is a homo-oligomer of 97 residues, and analysis by chemical cross-linking and SDS/PAGE indicates M2 forms a tetramer. However, a higher order molecular form is sometimes observed and, thus, it is necessary to determine the active form of the molecule. This was done by studying the currents of oocytes that expressed mixtures of the wild-type M2 protein (epitope tagged) and the mutant protein M2-V27S, which is resistant to the inhibitor amantadine. The composition of mixed oligomers of the two proteins expressed at the plasma membrane of individual oocytes was quantified after antibody capture of the cell surface expressed molecules and it was found that the subunits mixed freely. When the ratio of wild-type to mutant protein subunits was 0.85:0.15, the amantadine sensitivity was reduced to 50% and for a ratio of 0.71:0.29 to 20%. These results are consistent with the amantadine-resistant mutant being dominant and the oligomeric state being a tetramer.
Resumo:
Dissection of the primary and secondary response to an influenza A virus established that the liver contains a substantial population of CD8+ T cells specific for the immunodominant epitope formed by H-2Db and the influenza virus nucleoprotein peptide fragment NP366–374 (DbNP366). The numbers of CD8+ DbNP366+ cells in the liver reflected the magnitude of the inflammatory process in the pneumonic lung, though replication of this influenza virus is limited to the respiratory tract. Analysis of surface phenotypes indicated that the liver CD8+ DbNP366+ cells tended to be more “activated” than the set recovered from lymphoid tissue but generally less so than those from the lung. The distinguishing characteristic of the lymphocytes from the liver was that the prevalence of the CD8+ DbNP366+ set was always much higher than the percentage of CD8+ T cells that could be induced to synthesize interferon γ after short-term, in vitro stimulation with the NP366–374 peptide, whereas these values were generally comparable for virus-specific CD8+ T cells recovered from other tissue sites. Also, the numbers of apoptotic CD8+ T cells were higher in the liver. The results overall are consistent with the idea that antigen-specific CD8+ T cells are destroyed in the liver during the control and resolution phases of this viral infection, though this destruction is not necessarily an immediate process.
Resumo:
The influenza A virus pandemic of 1918–1919 resulted in an estimated 20–40 million deaths worldwide. The hemagglutinin and neuraminidase sequences of the 1918 virus were previously determined. We here report the sequence of the A/Brevig Mission/1/18 (H1N1) virus nonstructural (NS) segment encoding two proteins, NS1 and nuclear export protein. Phylogenetically, these genes appear to be close to the common ancestor of subsequent human and classical swine strain NS genes. Recently, the influenza A virus NS1 protein was shown to be a type I IFN antagonist that plays an important role in viral pathogenesis. By using the recently developed technique of generating influenza A viruses entirely from cloned cDNAs, the hypothesis that the 1918 virus NS1 gene played a role in virulence was tested in a mouse model. In a BSL3+ laboratory, viruses were generated that possessed either the 1918 NS1 gene alone or the entire 1918 NS segment in a background of influenza A/WSN/33 (H1N1), a mouse-adapted virus derived from a human influenza strain first isolated in 1933. These 1918 NS viruses replicated well in tissue culture but were attenuated in mice as compared with the isogenic control viruses. This attenuation in mice may be related to the human origin of the 1918 NS1 gene. These results suggest that interaction of the NS1 protein with host-cell factors plays a significant role in viral pathogenesis.
New approach for inhibiting Rev function and HIV-1 production using the influenza virus NS1 protein.
Resumo:
The Rev protein of HIV-1, which facilitates the nuclear export of HIV-1 pre-mRNAs, has been a target for antiviral therapy. Here we describe a new strategy for inhibiting Rev function and HIV-1 replication. In contrast to previous approaches, we use a wild-type rather than a mutant Rev protein and covalently link this Rev sequence to the NS1 protein of influenza A virus, a protein that inhibits the nuclear export of mRNAs. The NS1 protein contains an RNA-binding domain mutation (RM), so that the only functional RNA-binding domain in the chimeric protein (NS1RM-Rev) is in the Rev protein sequence. In the presence of the NS1RM-Rev chimeric protein, HIV-1 pre-mRNAs were retained in, rather than exported from, the nucleus. In addition, this chimeric protein effectively inhibited Rev function in trans in transfection experiments and effectively inhibited the production of HIV-1 in tissue culture cells transfected with an infectious molecular clone of HIV-1 DNA. The inhibitory activities of the NS1RM-Rev chimera were at least equivalent to those of the Rev M10 mutant protein, which has been considered to be the prototype trans inhibitor of Rev function and is currently in phase I clinical trials for the treatment of AIDS patients. We discuss (i) the potential for increasing the inhibitory activity of NS1-Rev chimeras against HIV-1 and (ii) the need for additional studies to evaluate these chimeras for the treatment of AIDS.
Resumo:
Résumé: Chaque année, les épidémies saisonnières d’influenza causent de 3 à 5 millions de cas sévères de maladie, entraînant entre 250 000 et 500 000 décès mondialement. Seulement deux classes d’antiviraux sont actuellement commercialisées pour traiter cette infection respiratoire : les inhibiteurs de la neuraminidase, tels que l’oseltamivir (Tamiflu) et les inhibiteurs du canal ionique M2 (adamantanes). Toutefois, leur utilisation est limitée par l’apparition rapide de résistance virale. Il est donc d’un grand intérêt de développer de nouvelles stratégies thérapeutiques pour le traitement de l’influenza. Le virus influenza dépend de l’activation de sa protéine de surface hémagglutinine (HA) pour être infectieux. L’activation a lieu par clivage protéolytique au sein d’une séquence d’acides aminés conservée. Ce clivage doit être effectué par une enzyme de l’hôte, étant donné que le génome du virus ne code pour aucune protéase. Pour les virus infectant l’humain, plusieurs études ont montré le potentiel de protéases à sérine transmembranaires de type II (TTSP) à promouvoir la réplication virale : TMPRSS2, TMPRSS4, HAT, MSPL, Desc1 et matriptase, identifiée récemment par notre équipe (Beaulieu, Gravel et al., 2013), activent l’HA des virus influenza A (principalement H1N1 et H3N2). Toutefois, il existe peu d’information sur le clivage de l’HA des virus influenza B, et seulement TMPRSS2 et HAT ont été identifiées comme étant capables d’activer ce type de virus. Les travaux de ce projet de maîtrise visaient à identifier d’autres TTSP pouvant activer l’HA de l’influenza B. L’efficacité de clivage par la matriptase, hepsine, HAT et Desc1 a été étudiée et comparée entre ces TTSP. Ces quatre protéases s’avèrent capables de cliver l’HA de l’influenza B in vitro. Cependant, seul le clivage par matriptase, hepsine et HAT promeut la réplication virale. De plus, ces TTSP peuvent aussi supporter la réplication de virus influenza A. Ainsi, l’utilisation d’un inhibiteur de TTSP, développé en collaboration avec notre laboratoire, permet de bloquer significativement la réplication virale dans les cellules épithéliales bronchiques humaines Calu-3. Cet inhibiteur se lie de façon covalente et lentement réversible au site actif de la TTSP par un mécanisme slow tight-binding. Puisque cet inhibiteur cible une composante de la cellule hôte, et non une protéine virale, il n’entraîne pas le développement de résistance après 15 passages des virus en présence de l’inhibiteur dans les cellules Calu-3. L’inhibition des TTSP activatrices d’HA dans le système respiratoire humain représente donc une nouvelle stratégie thérapeutique pouvant mener au développement d’antiviraux efficaces contre l’influenza.
Resumo:
The respiratory viruses are recognized as the most frequent lower respiratory tract pathogens for infants and young children in developed countries but less is known for developing populations. The authors conducted a prospective study to evaluate the occurrence, clinical patterns, and seasonal trends of viral infections among hospitalized children with lower respiratory tract disease (Group A). The presence of respiratory viruses in children's nasopharyngeal was assessed at admission in a pediatric ward. Cell cultures and immunofluorescence assays were used for viral identification. Complementary tests included blood and pleural cultures conducted for bacterial investigation. Clinical data and radiological exams were recorded at admission and throughout the hospitalization period. To better evaluate the results, a non- respiratory group of patients (Group B) was also constituted for comparison. Starting in February 1995, during a period of 18 months, 414 children were included- 239 in Group A and 175 in Group B. In Group A, 111 children (46.4%) had 114 viruses detected while only 5 children (2.9%) presented viruses in Group B. Respiratory Syncytial Virus was detected in 100 children from Group A (41.8%), Adenovirus in 11 (4.6%), Influenza A virus in 2 (0.8%), and Parainfluenza virus in one child (0.4%). In Group A, aerobic bacteria were found in 14 cases (5.8%). Respiratory Syncytial Virus was associated to other viruses and/or bacteria in six cases. There were two seasonal trends for Respiratory Syncytial Virus cases, which peaked in May and June. All children affected by the virus were younger than 3 years of age, mostly less than one year old. Episodic diffuse bronchial commitment and/or focal alveolar condensation were the clinical patterns more often associated to Respiratory Syncytial Virus cases. All children from Group A survived. In conclusion, it was observed that Respiratory Syncytial Virus was the most frequent pathogen found in hospitalized children admitted for severe respiratory diseases. Affected children were predominantly infants and boys presenting bronchiolitis and focal pneumonias. Similarly to what occurs in other subtropical regions, the virus outbreaks peak in the fall and their occurrence extends to the winter, which parallels an increase in hospital admissions due to respiratory diseases.
Resumo:
Background: Acute kidney injury in the pandemic swine origin influenza A virus (H1N1) infection has been reported as coursing with severe illness, although renal pathogenic mechanisms and histologic features are still being characterised. Case Report: We present two patients admitted with H1N1 pneumonia, sepsis, acute respiratory distress syndrome and need for invasive mechanical ventilation who developed acute kidney injury and became dialysis-dependent. In both cases a kidney biopsy was performed to establish a definitive diagnosis. Severe acute tubular necrosis was identified, with no further abnormalities. Conclusion: This report seems to confirm that the acute kidney injury in H1N1 infection is focused on the tubular cells. Our cases corroborate the renal histopathologic findings of other studies, highlighting the central role of the tubular cell. We bring new evidence of the histopathology of AKI in H1N1 infection since our data were collected in living patients and not via post-mortem studies.
Resumo:
Neuraminidase inhibitors (NAIs) oseltamivir and zanamivir are currently the only effective antiviral drugs available worldwide for the management of influenza. The potential development of resistance is continually threatening their use, rationalizing and highlighting the need for a close and sustained evaluation of virus susceptibility. This study aimed to analyze and characterize the phenotypic and genotypic NAIs susceptibility profiles of A(H1N1)pdm09 viruses circulating in Portugal from 2009 to 2010/2011. A total of 144 cases of A(H1N1)pdm09 virus infection from community and hospitalized patients were studied, including three suspected cases of clinical resistance to oseltamivir. Oseltamivir resistance was confirmed for two of the suspected cases. Neuraminidase (NA) H275Y resistant marker was found in viruses from both cases but for one it was only present in 26.2% of virus population, raising questions about the minimal percentage of resistant virus that should be considered relevant. Cross-decreased susceptibility to oseltamivir and zanamivir (2-4 IC50 fold-change) was detected on viruses from two potentially linked community patients from 2009. Both viruses harbored the NA I223V mutation. NA Y155H mutation was found in 18 statistical non-outlier viruses from 2009, having no impact on virus susceptibility. The mutations at NA N369K and V241I may have contributed to the significantly higher baseline IC50 value obtained to oseltamivir for 2010/2011 viruses, compared to viruses from the pandemic period. These results may contribute to a better understanding of the relationship between phenotype and genotype, which is currently challenging, and to the global assessment of A(H1N1)pdm09 virus susceptibility profile and baseline level to NAIs.
Resumo:
Laboratory surveillance of influenza has shown a low virus activity in Rio de Janeiro during 1980 and 1981. A few influenza A (H3N2) viruses were isolated in both years during the winter months. Serological investigations showed that this subtype has circulated mostly among children under 10 years of age. No H1N1 virus was isolated but an increase in the proportion of adults with antibody to his virus was noted in sera collected in 1981. Influenza B virus was isolated from children in the spring of 1981 and again an increase was noted in the proportion of adults with antibody to this virus.
Resumo:
The Presence of highly pathogenicH5N1 avian influenza has been confirmed in birds in Turkey, Romania, Russia and Kazakhstan. There have been a total of 4 confirmed cases of human infection in Eastern/South Eastern Turkey that has resulted in 2 deaths. Background Avian influenza naturally circulates in wild waterfowl such as ducks and geese often causing little or no symptoms. Many other bird species are susceptible to infection with these influenza viruses and in many of these species it may cause severe disease associated with high mortality. Outbreaks associated with high bird mortality are called Highly Pathogenic Avian Influenza (HPAI) to distinguish them from less pathogenic influenza. In January 2004 avian influenza in poultry was confirmed in Vietnam. Subsequently, there have been very substantial outbreaks of avian influenza associated with high mortality affecting poultry in various countries throughout Asia including Vietnam, Thailand, China, Malaysia, Mongolia, North & South Korea, Cambodia, Indonesia, Laos and Japan. These outbreaks are caused by H5N1 subtype of influenza A virus, the same subtype (but not identical to the virus) that caused the outbreak in Hong Kong in 1997. åÊ
Resumo:
In April 2009, in response to the WHO's alert due to the existence of human infection cases with a new AH1N1 influenza virus, known as swine flu, Andalusian Health Authorities trigger an specific action plan. The surveillance actions developped provided us with appropriate clinical, epidemiological and virological characteristics of the disease. During the first few days, contingency plans were set up based on epidemiological surveillance and outbreak control measures were adopted through early alert and rapid response systems. After phase 6 was declared, influenza sentinel and severe cases surveillance were used in order to plan healthcare services, to reduce transmission and to identify and protect the most vulnerable population groups. Behaviour of pandemic influenza in Andalusia was similar to that observed in the rest of the world. Atack rate was similar to a seasonal flu and the peak was reached at the 46th/2009 week. Most of them were mild cases and affected particularly to young people. The average age of hospitalised patients was 32. Prior pulmonary disease, smoking and morbid obesity (BMI>40) were the most common pathologies and risk factors in severe cases. An impact scenario of pandemic wave in Andalusia, with an expected attack rate from 2 to 5%, was prepared considering watt observed in the southern hemisphere. Characteristics of the epidemic concerning its extent, severity and mortality rate were adjusted to this scenario.
Resumo:
Background With the emergence of influenza H1N1v the world is facing its first 21st century global pandemic. Severe Acute Respiratory Syndrome (SARS) and avian influenza H5N1 prompted development of pandemic preparedness plans. National systems of public health law are essential for public health stewardship and for the implementation of public health policy[1]. International coherence will contribute to effective regional and global responses. However little research has been undertaken on how law works as a tool for disease control in Europe. With co-funding from the European Union, we investigated the extent to which laws across Europe support or constrain pandemic preparedness planning, and whether national differences are likely to constrain control efforts. Methods We undertook a survey of national public health laws across 32 European states using a questionnaire designed around a disease scenario based on pandemic influenza. Questionnaire results were reviewed in workshops, analysing how differences between national laws might support or hinder regional responses to pandemic influenza. Respondents examined the impact of national laws on the movements of information, goods, services and people across borders in a time of pandemic, the capacity for surveillance, case detection, case management and community control, the deployment of strategies of prevention, containment, mitigation and recovery and the identification of commonalities and disconnects across states. Results Results of this study show differences across Europe in the extent to which national pandemic policy and pandemic plans have been integrated with public health laws. We found significant differences in legislation and in the legitimacy of strategic plans. States differ in the range and the nature of intervention measures authorized by law, the extent to which borders could be closed to movement of persons and goods during a pandemic, and access to healthcare of non-resident persons. Some states propose use of emergency powers that might potentially override human rights protections while other states propose to limit interventions to those authorized by public health laws. Conclusion These differences could create problems for European strategies if an evolving influenza pandemic results in more serious public health challenges or, indeed, if a novel disease other than influenza emerges with pandemic potential. There is insufficient understanding across Europe of the role and importance of law in pandemic planning. States need to build capacity in public health law to support disease prevention and control policies. Our research suggests that states would welcome further guidance from the EU on management of a pandemic, and guidance to assist in greater commonality of legal approaches across states.