312 resultados para Infarct
Resumo:
Our purpose was to perform a systematic review and meta-analysis of randomized trials comparing percutaneous coronary intervention (PCI) of the infarct-related artery (IRA) with medical therapy in patients randomized >12 h after acute myocardial infarction (AMI).
Resumo:
AIM The effect of long-term high-intensity statin therapy on coronary atherosclerosis among patients with acute ST-segment elevation myocardial infarction (STEMI) is unknown. The aim of this study was to quantify the impact of high-intensity statin therapy on plaque burden, composition, and phenotype in non-infarct-related arteries of STEMI patients undergoing primary percutaneous coronary intervention (PCI). METHODS AND RESULTS Between September 2009 and January 2011, 103 STEMI patients underwent intravascular ultrasonography (IVUS) and radiofrequency ultrasonography (RF-IVUS) of the two non-infarct-related epicardial coronary arteries (non-IRA) after successful primary PCI. Patients were treated with high-intensity rosuvastatin (40 mg/day) throughout 13 months and serial intracoronary imaging with the analysis of matched segments was available for 82 patients with 146 non-IRA. The primary IVUS end-point was the change in per cent atheroma volume (PAV). After 13 months, low-density lipoprotein cholesterol (LDL-C) had decreased from a median of 3.29 to 1.89 mmol/L (P < 0.001), and high-density lipoprotein cholesterol (HDL-C) levels had increased from 1.10 to 1.20 mmol/L (P < 0.001). PAV of the non-IRA decreased by -0.9% (95% CI: -1.56 to -0.25, P = 0.007). Patients with regression in at least one non-IRA were more common (74%) than those without (26%). Per cent necrotic core remained unchanged (-0.05%, 95% CI: -1.05 to 0.96%, P = 0.93) as did the number of RF-IVUS defined thin cap fibroatheromas (124 vs. 116, P = 0.15). CONCLUSION High-intensity rosuvastatin therapy over 13 months is associated with regression of coronary atherosclerosis in non-infarct-related arteries without changes in RF-IVUS defined necrotic core or plaque phenotype among STEMI patients.
Resumo:
Ischaemic cerebral accidents are frequent following extracorporeal membrane oxygenation (ECMO), especially after fixing the reinjection cannula in the right primitive carotid artery, which leads to an interruption in downstream flow. We describe a rare and unusual symptom of cerebral ischaemic accident that is known as Capgras syndrome. This feature is interesting because it may be documented by computed tomography (CT) scan and particular electroencephalography signals. It appears that our observation represents the first documented case of Capgras syndrome complicating ECMO. This incident emphasizes the potential hazards associated with right common artery ligature for venoarterial extracorporeal membrane oxygenation (VAECMO). In addition, it shows that this psychiatric symptom (that has been interpreted psychodynamically for many years) can have an organic basis, which should be studied.
Resumo:
BACKGROUND Mapping to identify scar-related ventricular tachycardia re-entry circuits during sinus rhythm focuses on sites with abnormal electrograms or pace-mapping findings of QRS morphology and long stimulus to QRS intervals. We hypothesized that (1) these methods do not necessarily identify the same sites and (2) some electrograms are far-field potentials that can be recognized by pacing. METHODS AND RESULTS From 12 patients with coronary disease and recurrent ventricular tachycardia undergoing catheter ablation, we retrospectively analyzed electrograms and pacing at 546 separate low bipolar voltage (<1.5 mV) sites. Electrograms were characterized as showing evidence of slow conduction if late potentials (56%) or fractionated potentials (76%) were present. Neither was present at (13%) sites. Pacing from the ablation catheter captured 70% of all electrograms. Higher bipolar voltage and fractionation were independent predictors for pace capture. There was a linear correlation between the stimulus to QRS duration during pacing and the lateness of a capturing electrogram (P<0.001), but electrogram and pacing markers of slow conduction were discordant at 40% of sites. Sites with far-field potentials, defined as those that remained visible and not captured by pacing stimuli, were identified at 48% of all pacing sites, especially in areas of low bipolar voltage and late potentials. Initial radiofrequency energy application rendered 74% of targeted sites electrically unexcitable. CONCLUSIONS Far-field potentials are common in scar areas. Combining analysis of electrogram characteristics and assessment of pace capture may refine identification of substrate targets for radiofrequency ablation.
Resumo:
Background Granulocyte-colony stimulating factor (G-CSF) shows promise as a treatment for stroke. This systematic review assesses G-CSF in experimental ischaemic stroke. Methods Relevant studies were identified with searches of Medline, Embase and PubMed. Data were extracted on stroke lesion size, neurological outcome and quality, and analysed using Cochrane Review Manager using random effects models; results are expressed as standardised mean difference (SMD) and odds ratio (OR). Results Data were included from 19 publications incorporating 666 animals. G-CSF reduced lesion size significantly in transient (SMD -1.63, p<0.00001) but not permanent (SMD -1.56, p=0.11) focal models of ischaemia. Lesion size was reduced at all doses and with treatment commenced within 4 hours of transient ischaemia. Neurological deficit (SMD -1.37, p=0.0004) and limb placement (SMD -1.88, p=0.003) improved with G-CSF; however, locomotor activity (>4 weeks post ischaemia) was not (SMD 0.76, p=0.35). Death (OR 0.27, p<0.0001) was reduced with G-CSF. Median study quality was 4 (range 0-7/8); Egger’s test suggested significant publication bias (p=0.001). Conclusions G-CSF significantly reduced lesion size in transient but not permanent models of ischaemic stroke. Motor impairment and death were also reduced. Further studies assessing dose-response, administration time, length of ischaemia and long-term functional recovery are needed.
Resumo:
Pre-reperfusion administration of intravenous (IV) metoprolol reduces infarct size in ST-segment elevation myocardial infarction (STEMI). This study sought to determine how this cardioprotective effect is influenced by the timing of metoprolol therapy having either a long or short metoprolol bolus-to-reperfusion interval. We performed a post hoc analysis of the METOCARD-CNIC (effect of METOprolol of CARDioproteCtioN during an acute myocardial InfarCtion) trial, which randomized anterior STEMI patients to IV metoprolol or control before mechanical reperfusion. Treated patients were divided into short- and long-interval groups, split by the median time from 15 mg metoprolol bolus to reperfusion. We also performed a controlled validation study in 51 pigs subjected to 45 min ischemia/reperfusion. Pigs were allocated to IV metoprolol with a long (−25 min) or short (−5 min) pre-perfusion interval, IV metoprolol post-reperfusion (+60 min), or IV vehicle. Cardiac magnetic resonance (CMR) was performed in the acute and chronic phases in both clinical and experimental settings. For 218 patients (105 receiving IV metoprolol), the median time from 15 mg metoprolol bolus to reperfusion was 53 min. Compared with patients in the short-interval group, those with longer metoprolol exposure had smaller infarcts (22.9 g vs. 28.1 g; p = 0.06) and higher left ventricular ejection fraction (LVEF) (48.3% vs. 43.9%; p = 0.019) on day 5 CMR. These differences occurred despite total ischemic time being significantly longer in the long-interval group (214 min vs. 160 min; p < 0.001). There was no between-group difference in the time from symptom onset to metoprolol bolus. In the animal study, the long-interval group (IV metoprolol 25 min before reperfusion) had the smallest infarcts (day 7 CMR) and highest long-term LVEF (day 45 CMR). In anterior STEMI patients undergoing primary angioplasty, the sooner IV metoprolol is administered in the course of infarction, the smaller the infarct and the higher the LVEF. These hypothesis-generating clinical data are supported by a dedicated experimental large animal study.
Resumo:
The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 µg/kg) reduced mean arterial pressure from 88 ± 12 to 42 ± 7 mmHg and increased heart rate from 335 ± 38 to 402 ± 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 µg/kg infused over a period of 5 min) from 35 ± 3 to 10 ± 2% of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.
Resumo:
Objective To test the hypothesis that 12-lead ECG QRS scoring quantifies myocardial scar and correlates with disease severity in Chagas' heart disease. Design Patients underwent 12-lead ECG for QRS scoring and cardiac magnetic resonance with late gadolinium enhancement (CMR-LGE) to assess myocardial scar. Setting University of Sao Paulo Medical School, Sao Paulo, Brazil. Patients 44 Seropositive patients with Chagas' disease without a history of myocardial infarction and at low risk for coronary artery disease. Main outcome measures Correlation between QRS score, CMR-LGE scar size and left ventricular ejection fraction. Relation between QRS score, heart failure (HF) class and history of ventricular tachycardia (VT). Results QRS score correlated directly with CMR-LGE scar size (R=0.69, p<0.0001) and inversely with left ventricular ejection fraction (R=-0.54, p=0.0002), which remained significant in the subgroup with conduction defects. Patients with class II or III HF had significantly higher QRS scores than those with class I HF (5.1 +/- 3.4 vs 2.1 +/- 3.1 QRS points (p=0.002)) and patients with a history of VT had significantly higher QRS scores than those without a history of VT (5.3 +/- 3.2% vs 2.6 +/- 3.4 QRS points (p=0.02)). A QRS score >= 2 points had particularly good sensitivity and specificity (95% and 83%, respectively) for prediction of large CMR-LGE, and a QRS score >= 7 points had particularly high specificity (92% and 89%, respectively) for predicting significant left ventricular dysfunction and history of VT. Conclusions The wide availability of 12-lead ECG makes it an attractive screening tool and may enhance clinical risk stratification of patients at risk for more severe, symptomatic Chagas' heart disease.
Resumo:
Balance problems in hemiparetic patients after stroke can be caused by different impairments in the physiological systems involved in Postural control, including sensory afferents, movement strategies, biomechanical constraints, cognitive processing, and perception of verticality. Balance impairments and disabilities must be appropriately addressed. This article reviews the most common balance abnormalities in hemiparetic patients with stroke and the main tools used to diagnose them.
Resumo:
Ischaemic preconditioning in rats was studied using MRI. Ischaemic preconditioning was induced, using an intraluminal filament method, by 30 min middle cerebral artery occlusion (MCAO), and imaged 24 h later. The secondary insult of 100 min MCAO was induced 3 days following preconditioning and imaged 24 and 72 h later. Twenty four hours following ischaemic preconditioning most rats showed small sub-cortical hyperintense regions not seen in sham-preconditioned rats. Twenty-four hours and 72 h following the secondary insult preconditioned animals showed significantly smaller lesions (24 h = 112 +/- 31 mm(3), mean +/- standard error; 72 h = 80 +/- 35 mm(3)) which were confined to the striatum, than controls (24 h = 234 +/- 32 mm(3), p = 0.026; 72 h = 275 +/- 37 mm(3), p = 0.003). In addition during Lesion maturation from 24 to 72 h post-secondary MCAO, preconditioned rats displayed an average reduction in lesion size as measured by MRI whereas sham-preconditioned rats displayed increases in lesion size; this is the first report of such differential lesion volume evolution in cerebral ischaemic preconditioning. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Diffusion- and perfusion-weighted magnetic resonance imaging provides important pathophysiological information in acute bra-in ischemia. We performed a prospective study in 19 sub-6-hour stroke patients using serial diffusion- and perfusion-weighted imaging before intravenous thrombolysis, with repeat studies, both subacutely and at outcome. For comparison of ischemic lesion evolution and clinical outcome, we used a historical control group of 21 sub-6-hour ischemic stroke patients studied serially with diffusion- and perfusion-weighted imaging. The two groups were well matched for the baseline National Institutes of Health Stroke Scale and magnetic resonance parameters. Perfusion-weighted imaging-diffusion-weighted imaging mismatch was present in 16 of 19 patients treated with tissue plasminogen activator, and 16 of 21 controls. Perfusion-weighted imaging-diffusion-weighted imaging mismatch patients treated with tissue plaminogen activator had higher recanalization rates and enhanced reperfusion at day 3 (81% vs 47% in controls), and a greater proportion of severely hypoperfused acute mismatch tissue not progressing to infarction (82% vs -25% in controls). Despite similar baseline diffusion-weighted imaging lesions, infarct expansion was less in the recombinant tissue plaminogen activator group (14cm(3) vs 56cm(3) in controls). The positive effect of thrombolysis on lesion growth in mismatch patients translated into a greater improvement in baseline to outcome National Institutes of Health Stroke Scale in the group treated with recombinant tissue plaminogen activator, and a significantly larger proportion of patients treated with recombinant tissue plaminogen activator having a clinically meaningful improvement in National Institutes of Health Stroke Scale of;2:7 points. The natural evolution of acute perfusion-weighted imaging-diffusion-weighted imaging mismatch tissue may be altered by thrombolysis, with improved stroke outcome. This has implications for the use of diffusion- and perfusion-weighted imaging in selecting and monitoring patients for thrombolytic therapy.
Resumo:
Background and Purpose-The Echoplanar Imaging Thrombolysis Evaluation Trial ( EPITHET) tests the hypothesis that perfusion-weighted imaging (PWI)-diffusion-weighted imaging (DWI) mismatch predicts the response to thrombolysis. There is no accepted standardized definition of PWI-DWI mismatch. We compared common mismatch definitions in the initial 40 EPITHET patients. Methods-Raw perfusion images were used to generate maps of time to peak (TTP), mean transit time (MTT), time to peak of the impulse response (Tmax) and first moment transit time (FMT). DWI, apparent diffusion coefficient ( ADC), and PWI volumes were measured with planimetric and thresholding techniques. Correlations between mismatch volume (PWIvol-DWIvol) and DWI expansion (T2(Day) (90-vol)-DWIAcute-vol) were also assessed. Results-Mean age was 68 +/- 11, time to MRI 4.5 +/- 0.7 hours, and median National Institutes of Health Stroke Scale (NIHSS) score 11 (range 4 to 23). Tmax and MTT hypoperfusion volumes were significantly lower than those calculated with TTP and FMT maps (P < 0.001). Mismatch >= 20% was observed in 89% (Tmax) to 92% (TTP/FMT/MTT) of patients. Application of a +4s ( relative to the contralateral hemisphere) PWI threshold reduced the frequency of positive mismatch volumes (TTP 73%/FMT 68%/Tmax 54%/MTT 43%). Mismatch was not significantly different when assessed with ADC maps. Mismatch volume, calculated with all parameters and thresholds, was not significantly correlated with DWI expansion. In contrast, reperfusion was correlated inversely with infarct growth (R= -0.51; P = 0.009). Conclusions-Deconvolution and application of PWI thresholds provide more conservative estimates of tissue at risk and decrease the frequency of mismatch accordingly. The precise definition may not be critical; however, because reperfusion alters tissue fate irrespective of mismatch.