989 resultados para Induced Response


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested the phenotypic responses of larval striped marsh frogs (Limnodynastes peronii) to the odonate nymph predator, Aeshna brevistyla. When reared in the presence of dragonfly nymphs feeding upon conspecifics of L. peronii larvae the tadpoles showed a strong change in morphology. Morphological changes included an increase in total tail height, but also an unexpected marked change in head-body shape. In addition, we examined how tadpole development, as well as mass and length at metamorphosis, was affected by exposure to dragonfly nymphs. Larval development of L. peronii was strongly influenced by exposure to the predatory behaviour of dragonfly nymphs. Predator-induced tadpoles had significantly slower developmental rates than control larvae. Although metamorphs of non-exposed L. peronii were approximately 33% lighter than predator-exposed metamorphs and possessed lower jump distances, after adjusting for mass there was no difference in jump distance. The newly described morphological response may assist in more accurately relating morphological plasticity to fitness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: Dipalmitoylphosphatidycholine (DPPC) is the characteristic and main constituent of surfactant. Adsorption of surfactant to epithelial surfaces may be important in the masking of receptors. The aims of the study were to (i) compare the quantity of free DPPC in the airways and gastric aspirates of children with gastroesophageal reflux disease (GORD) to those without and (ii) describe the association between free DPPC levels with airway cellular profile and capsaicin cough sensitivity. Methods: Children aged < 14 years were defined as 'coughers' if a history of cough in association with their GORD symptoms was elicited before gastric aspirates and nonbronchoscopic bronchoalveolar lavage (BAL) were obtained during elective flexible upper gastrointestinal endoscopy. GORD was defined as histological presence of reflux oesophagitis. Spirometry and capsaicin cough-sensitivity test was carried out in children aged > 6 years before the endoscopy. Results: Median age of the 68 children was 9 years (interquartile range (IQR) 7.2). Median DPPC level in BAL of children with cough (72.7 mu g/mL) was similar to noncoughers (88.5). There was also no significant difference in DPPC levels in both BAL and gastric aspirates of children classified according to presence of GORD. There was no correlation between DPPC levels and cellular counts or capsaicin cough-sensitivity outcome measures. Conclusion: We conclude that free DPPC levels in the airways and gastric aspirate is not influenced by presence of cough or GORD defined by histological presence of reflux oesophagitis. Whether quantification of adsorbed surfactant differs in these groups remain unknown. Free DPPC is unlikely to have a role in masking of airway receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer cachexia encompases severe weight loss, characterised by the debilitating atrophy of adipose and skeletal muscle mass. Skeletal muscle proteolysis in cancer cachexia is mediated by a sulphated glycoprotein with a relative molecular mass of 24kDa, termed Proteolysis-Inducing Factor (PIF). PIF induced a significant increase in protein degradation, peaking at 4.2nM PIF (p<0.001), ‘chymotrypsin-like’ activity of the proteasome (p<0.001) and increased expression of components of the ATP-ubiquitin dependent proteolytic pathway. This was attenuated in vitro by pre-incubation with the PKC inhibitor calphostin C (100µM) and NF-kB the inhibitors SN50 (18µM), curcumin (50µM) and resveratrol (30µM), 2 hours prior to the addition of PIF. In vivo studies found the IKK inhibitor resveratrol (1mg/kg) to be successful in attenuating protein degradation (p<0.001) and upregulation of ubiquitin-dependent proteolysis in MAC16 tumour bearing mice. C2C12 myoblasts transfected with mutant IkBα and PKCα inserts did not elicit a PIF-induced response, suggesting the importance of the transcription factor NF-kB and PKC  involvement in PIF signal transduction. 15(S)-HETE acts as an intracellular mediator of PIF and exerts an effect through the activation of PKC and subsequently IKK, which phosphorylates IkBα and allows NF-kB to migrate to the nucleus. This effect was negated with the PKC inhibitor calphostin C (300nM). A commercially produced PIF receptor antibody was raised in rabbits immunised with a peptide containing the partial N-terminal sequence of the PIF receptor. The PIF receptor antibody was successful in attenuating the PIF-induced increase in skeletal muscle catabolism and protein degradation in vitro at 10µg/ml (p<0.001) and 3.47mg/kg in vivo (p<0.001). The data suggest great potential in the development of this antibody as a therapy against cancer cachexia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: To examine exercise-induced changes in the reward value of food during medium-term supervised exercise in obese individuals. ---------- Subjects/Methods: The study was a 12-week supervised exercise intervention prescribed to expend 500 kcal/day, 5 d/week. 34 sedentary obese males and females were identified as responders (R) or non-responders (NR) to the intervention according to changes in body composition relative to measured energy expended during exercise. Food reward (ratings of liking and wanting, and relative preference by forced choice pairs) for an array of food images was assessed before and after an acute exercise bout. ---------- Results. 20 responders and 14 non-responders were identified. R lost 5.2 kg±2.4 of total fat mass and NR lost 1.7 kg±1.4. After acute exercise, liking for all foods increased in NR compared to no change in R. Furthermore, NR showed an increase in wanting and relative preference for high-fat sweet foods. These differences were independent of 12-weeks regular exercise and weight loss. ---------- Conclusion. Individuals who showed an immediate post-exercise increase in liking and increased wanting and preference for high-fat sweet foods displayed a smaller reduction in fat mass with exercise. For some individuals, exercise increases the reward value of food and diminishes the impact of exercise on fat loss.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ultrathin films of a poly(styrene)-block-poly(2-vinylpyrindine) diblock copolymer (PS-b-P2VP) and poly(styrene)-block-poly(4-vinylpyrindine) diblock copolymer (PS-b-P4VP) were used to form surface-induced nanopattern (SINPAT) on mica. Surface interaction controlled microphase separation led to the formation of chemically heterogeneous surface nanopatterns on dry ultrathin films. Two distinct nanopatterned surfaces, namely, wormlike and dotlike patterns, were used to investigate the influence of topography in the nanometer range on cell adhesion, proliferation, and migration. Atomic force microscopy was used to confirm that SINPAT was stable under cell culture conditions. Fibroblasts and mesenchymal progenitor cells were cultured on the nanopatterned surfaces. Phase contrast and confocal laser microscopy showed that fibroblasts and mesenchymal progenitor cells preferred the densely spaced wormlike patterns. Atomic force microscopy showed that the cells remodelled the extracellular matrix differently as they migrate over the two distinctly different nanopatterns

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetically distinct checkpoints, activated as a consequence of either DNA replication arrest or ionizing radiation-induced DNA damage, integrate DNA repair responses into the cell cycle programme. The ataxia-telangiectasia mutated (ATM) protein kinase blocks cell cycle progression in response to DNA double strand breaks, whereas the related ATR is important in maintaining the integrity of the DNA replication apparatus. Here, we show that thymidine, which slows the progression of replication forks by depleting cellular pools of dCTP, induces a novel DNA damage response that, uniquely, depends on both ATM and ATR. Thymidine induces ATM-mediated phosphorylation of Chk2 and NBS1 and an ATM-independent phosphorylation of Chk1 and SMC1. AT cells exposed to thymidine showed decreased viability and failed to induce homologous recombination repair (HRR). Taken together, our results implicate ATM in the HRR-mediated rescue of replication forks impaired by thymidine treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVEs A decline in resting energy expenditure (REE) beyond that predicted from changes in body composition has been noted following dietary-induced weight loss. However, it is unknown whether a compensatory downregulation in REE also accompanies exercise (EX)-induced weight loss, or whether this adaptive metabolic response influences energy intake (EI). SUBJECTS/METHODS Thirty overweight and obese women (body mass index (BMI)=30.6±3.6 kg/m2) completed 12 weeks of supervised aerobic EX. Body composition, metabolism, EI and metabolic-related hormones were measured at baseline, week 6 and post intervention. The metabolic adaptation (MA), that is, difference between predicted and measured REE was also calculated post intervention (MApost), with REE predicted using a regression equation generated in an independent sample of 66 overweight and obese women (BMI=31.0±3.9 kg/m2). RESULTS Although mean predicted and measured REE did not differ post intervention, 43% of participants experienced a greater-than-expected decline in REE (−102.9±77.5 kcal per day). MApost was associated with the change in leptin (r=0.47; P=0.04), and the change in resting fat (r=0.52; P=0.01) and carbohydrate oxidation (r=−0.44; P=0.02). Furthermore, MApost was also associated with the change in EI following EX (r=−0.44; P=0.01). CONCLUSIONS Marked variability existed in the adaptive metabolic response to EX. Importantly, those who experienced a downregulation in REE also experienced an upregulation in EI, indicating that the adaptive metabolic response to EX influences both physiological and behavioural components of energy balance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We thank Dr Shedden and Dr Pall for their insightful comments and the opportunity to clarify a number of points from our work.1 The “protection factor” (PF) expressed as the inverse of the transmittance of contact lens (CL) material (1/Tλ), where T is the percentage transmittance of ultraviolet radiation (UVR) in a given waveband (UVC, UVB or UVA) of the UV spectrum for contact lenses is the standard method for reporting PF values and as such there should not be any controversy. We have calculated the PF for each wavelength across the entire UV spectrum (UVC, UVB, UVA) as presented in figure 3 of our previous publication.1 In that article, we were simply stating the observation when transmission in the UVC spectra band is considered especially because appreciable amounts of potentially carcinogenic short UV wavelengths was shown to be present in sunlight in our region three decades ago2 and these short wavelength photons are reported to be more biologically damaging to ocular tissues.3 In addition, the depletion of the Ozone layer is still continuing. Nevertheless, we understand the concern of the authors that the results of the PF might be confusing to those who are not familiar with the science of UVR and as such we have made some revisions to the findings of the calculated PF...

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Generation of effective immune responses against pathogenic microbes depends on a fine balance between pro- and anti-inflammatory responses. Interleukin-10 (IL-10) is essential in regulating this balance and has garnered renewed interest recently as a modulator of the response to infection at the JAK-STAT signaling axis of host responses. Here, we examine how IL-10 functions as the “master regulator” of immune responses through JAK-STAT, and provide a perspective from recent insights on bacterial, protozoan, and viral infection model systems. Pattern recognition and subsequent molecular events that drive activation of IL-10-associated JAK-STAT circuitry are reviewed and the implications for microbial pathogenesis are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Measurable electrical signal is generated when a gas flows over a variety of solids, including doped semiconductors, even at the modest speed of a few meters per second. The underlying mechanism is an interesting interplay of Bernoulli's principle and the Seebeck effect. The electrical signal depends on the square of Mach number (M) and is proportional to the Seebeck coefficient (S) of the solids. Here we present experimental estimate of the response time of the signal rise and fall process, i.e. how fast the semiconductor materials respond to a steady flow as soon as it is set on or off. A theoretical model is also presented to understand the process and the dependence of the response time on the nature and physical dimensions of the semiconductor material used and they are compared with the experimental observations. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The magnetically induced currents in organic monoring and multiring molecules, in Möbius shaped molecules and in inorganic all-metal molecules have been investigated by means of the Gauge-including magnetically induced currents (GIMIC) method. With the GIMIC method, the ring-current strengths and the ring-current density distributions can be calculated. For open-shell molecules, also the spin current can be obtained. The ring-current pathways and ring-current strengths can be used to understand the magnetic resonance properties of the molecules, to indirectly identify the effect of non-bonded interactions on NMR chemical shifts, to design new molecules with tailored properties and to discuss molecular aromaticity. In the thesis, the magnetic criterion for aromaticity has been adopted. According to this, a molecule which has a net diatropic ring current might be aromatic. Similarly, a molecule which has a net paratropic current might be antiaromatic. If the net current is zero, the molecule is nonaromatic. The electronic structure of the investigated molecules has been resolved by quantum chemical methods. The magnetically induced currents have been calculated with the GIMIC method at the density-functional theory (DFT) level, as well as at the self-consistent field Hartree-Fock (SCF-HF), at the Møller-Plesset perturbation theory of the second order (MP2) and at the coupled-cluster singles and doubles (CCSD) levels of theory. For closed-shell molecules, accurate ring-current strengths can be obtained with a reasonable computational cost at the DFT level and with rather small basis sets. For open-shell molecules, it is shown that correlated methods such as MP2 and CCSD might be needed to obtain reliable charge and spin currents. The basis set convergence has to be checked for open-shell molecules by performing calculations with large enough basis sets. The results discussed in the thesis have been published in eight papers. In addition, some previously unpublished results on the ring currents in the endohedral fullerene Sc3C2@C80 and in coronene are presented. It is shown that dynamical effects should be taken into account when modelling magnetic resonance parameters of endohedral metallofullerenes such as Sc3C2@C80. The ring-current strengths in a series of nano-sized hydrocarbon rings are related to static polarizabilities and to H-1 nuclear magnetic resonance (NMR) shieldings. In a case study on the possible aromaticity of a Möbius-shaped [16]annulene we found that, according to the magnetic criterion, the molecule is nonaromatic. The applicability of the GIMIC method to assign the aromatic character of molecules was confirmed in a study on the ring currents in simple monocylic aromatic, homoaromatic, antiaromatic, and nonaromatic hydrocarbons. Case studies on nanorings, hexaphyrins and [n]cycloparaphenylenes show that explicit calculations are needed to unravel the ring-current delocalization pathways in complex multiring molecules. The open-shell implementation of GIMIC was applied in studies on the charge currents and the spin currents in single-ring and bi-ring molecules with open shells. The aromaticity predictions that are made based on the GIMIC results are compared to other aromaticity criteria such as H-1 NMR shieldings and shifts, electric polarizabilities, bond-length alternation, as well as to predictions provided by the traditional Hückel (4n+2) rule and its more recent extensions that account for Möbius twisted molecules and for molecules with open shells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Submarine pipelines are always trenched within a seabed for reducing wave loads and thereby enhancing their stability. Based on Biot’s poroelastic theory, a two-dimensional finite element model is developed to investigate non-linear wave-induced responses of soil around a trenched pipeline, which is verified with the flume test results by Sudhan et al. [Sudhan, C.M., Sundar, V., Rao, S.N., 2002. Wave induced forces around buried pipeline. Ocean Engineering, 29, 533–544] and Turcotte et al. [Turcotte, B.R., Liu, P.L.F., Kulhawy, F.H., 1984. Laboratory evaluation of wave tank parameters for wave-sediment interaction. Joseph H. Defree Hydraulic Laboratory Report 84-1, School of Civil and Environmental Engineering, Cornell University]. Non-linear wave-induced transient pore pressure around pipeline at various phases of wave loading is examined firstly. Unlike most previous investigations, in which only a single sediment layer and linear wave loading were concerned, in this study, the influences of the non-linearity of wave loading, the physical properties of backfill materials and the geometry profile of trenches on the excess pore pressures within the soil around pipeline, respectively, were explored, taking into account the in situ conditions of buried pipeline in the shallow ocean zones. Based on the parametric study, it is concluded that the shear modulus and permeability of backfill soils significantly affect the wave-induced excess pore pressures around trenched pipeline, and that the effect of wave non-linearity becomes more pronounced and comparable with that of trench depth, especially at high wave steepness in shallow water.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95-107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18 alpha-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE(2) or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18 alpha-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unless the fabrication error control is well treated, it easily causes overetched fabrication errors, which causes the resonant peak value deviation during the fabrication process of guided-mode resonant filters (GMRFs). Hence, the fabrication error control becomes a key point for improving the performance of GMRF. We find that, within the range of the groove depth from 93 to 105 nm, the relationship between the overetched error and the resonant peak value deviation is nearly linear, which means that we can compensate the reflectance response deviation and reduce the resonant peak value deviation by the method of covering the layer film on the GMRF. Simulation results show that the deviation is compensated perfectly by this way. (C) 2008 Optical Society of America