880 resultados para Indole-3-acetic-acid Levels
Resumo:
Among the Agrobacterium T-DNA genes, rolB, rolC, orf13, orf8, lso, 6b and several other genes encode weakly homologous proteins with remarkable effects on plant growth. The 6b oncogene induces tumors and enations. In order to study its properties we have used transgenic tobacco plants that carry a dexamethasone-inducible 6b gene, dex-T-6b. Upon induction, dex-T-6b plants develop a large array of morphological modifications, some of which involve abnormal cell expansion. In the present investigation, dex-T-6b-induced expansion was studied in intact leaves and an in vitro leaf disc system. Although T-6b and indole-3-acetic acid (IAA) both induced expansion and were non-additive, T-6b expression did not increase IAA levels, nor did it induce an IAA-responsive gene. Fusicoccin (FC) is known to stimulate expansion by increasing cell wall plasticity. T-6b- and FC-induced expansion were additive at saturating FC concentrations, indicating that T-6b does not act by a similar mechanism to FC. T-6b expression led to higher leaf osmolality values, in contrast to FC, suggesting that the T-6b gene induces expansion by increasing osmolyte concentrations. Metabolite profiling showed that glucose and fructose played a major role in this increase. We infer that T-6b disrupts the osmoregulatory controls that govern cell expansion during development and wound healing.
Resumo:
Auxin is associated with the regulation of virtually every aspect of plant growth and development. Many previous genetic and biochemical studies revealed that, among the proposed routes for the production of auxin, the so-called indole-3-pyruvic acid (IPA) pathway is the main source for indole-3-acetic acid (IAA) in plants. The IPA pathway involves the action of 2 classes of enzymes, tryptophan-pyruvate aminotransferases (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1(TAA1)/TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR)) and flavin monooxygenases (YUCCA). Both enzyme classes appear to be encoded by small gene families in Arabidopsis consisting of 5 and 11 members, respectively. We recently showed that it is possible to induce transcript accumulation of 2 YUCCA genes, YUC8 and YUC9, by methyl jasmonate treatment. Both gene products were demonstrated to contribute to auxin biosynthesis in planta.1 Here we report that the overexpression of YUC8 as well as YUC9 led to strong lignification of plant aerial tissues. Furthermore, new evidence indicates that this abnormally strong secondary growth is linked to increased levels of ethylene production.
Resumo:
Physiological studies with excised stem segments have implicated the plant hormone indole-3-acetic acid (IAA or auxin) in the regulation of cell elongation. Supporting evidence from intact plants has been somewhat more difficult to obtain, however. Here, we report the identification and characterization of an auxin-mediated cell elongation growth response in Arabidopsis thaliana. When grown in the light at high temperature (29°C), Arabidopsis seedlings exhibit dramatic hypocotyl elongation compared with seedlings grown at 20°C. This temperature-dependent growth response is sharply reduced by mutations in the auxin response or transport pathways and in seedlings containing reduced levels of free IAA. In contrast, mutants deficient in gibberellin and abscisic acid biosynthesis or in ethylene response are unaffected. Furthermore, we detect a corresponding increase in the level of free IAA in seedlings grown at high temperature, suggesting that temperature regulates auxin synthesis or catabolism to mediate this growth response. Consistent with this possibility, high temperature also stimulates other auxin-mediated processes including auxin-inducible gene expression. Based on these results, we propose that growth at high temperature promotes an increase in auxin levels resulting in increased hypocotyl elongation. These results strongly support the contention that endogenous auxin promotes cell elongation in intact plants.
Resumo:
The plant growth hormone indole-3-acetic acid (IAA) transcriptionally activates expression of several genes in plants. We have previously identified a 164-bp promoter region (-318 to -154) in the PS-IAA4/5 gene that confers IAA inducibility. Linker-scanning mutagenesis across the region has identified two positive domains: domain A (48 bp; -203 to -156) and domain B (44 bp; -299 to -256), responsible for transcriptional activation of PS-IAA4/5 by IAA. Domain A contains the highly conserved sequence 5'-TGTCCCAT-3' found among various IAA-inducible genes and behaves as the major auxin-responsive element. Domain B functions as an enhancer element which may also contain a less efficient auxin-responsive element. The two domains act cooperatively to stimulate transcription; however, tetramerization of domain A or B compensates for the loss of A or B function. The two domains can also mediate IAA-induced transcription from the heterologous cauliflower mosaic virus 35S promoter (-73 to +1). In vivo competition experiments with icosamers of domain A or B show that the domains interact specifically and with different affinities to low abundance, positive transcription factor(s). A model for transcriptional activation of PS-IAA4/5 by IAA is discussed.
Resumo:
One of the first and most enduring roles identified for the plant hormone auxin is the mediation of apical dominance. Many reports have claimed that reduced stem indole-3-acetic acid (IAA) levels and/ or reduced basipetal IAA transport directly or indirectly initiate bud growth in decapitated plants. We have tested whether auxin inhibits the initial stage of bud release, or subsequent stages, in garden pea (Pisum sativum) by providing a rigorous examination of the dynamics of auxin level, auxin transport, and axillary bud growth. We demonstrate that after decapitation, initial bud growth occurs prior to changes in IAA level or transport in surrounding stem tissue and is not prevented by an acropetal supply of exogenous auxin. We also show that auxin transport inhibitors cause a similar auxin depletion as decapitation, but do not stimulate bud growth within our experimental time- frame. These results indicate that decapitation may trigger initial bud growth via an auxin-independent mechanism. We propose that auxin operates after this initial stage, mediating apical dominance via autoregulation of buds that are already in transition toward sustained growth.
Resumo:
Grevillea (Proteaceae) is a native Australian plant genus with high commercial value as landscape ornamentals. There has been limited research on the culture and propagation of Australian native species. The effect of indole-3-butyric acid (IBA) on the rooting of G. 'Royal Mantle' and G. 'Coastal Dawn' in winter, spring and summer was evaluated at University of Queensland Gatton, Southern Queensland in order to determine the rooting ability of this species in different seasons. Both Grevillea cultivars showed seasonal rooting. The more difficult-to-root G. 'Coastal Dawn' had a reduced response to IBA application than G. 'Royal Mantle'. Stem and leaf indole-3-acetic acid (IAA) levels were not different between cultivars, therefore rooting ability between the two cultivars does not appear to be due to the differences in endogenous IAA levels. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12 degrees C vs. 16 degrees C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.
Resumo:
Olive (Olea europaea L.), one of the main crops in the Mediterranean basin, is mainly propagated by cuttings, a classical propagation method that relies on the ability of the cuttings to form adventitious roots. While some cultivars are easily propagated by this technique, some of the most interesting olive cultivars are considered difficult-to-root which poses a challenge for their preservation and commercialization. Therefore, increasing the current knowledge on adventitious root formation is extremely important for species like olive. This research focuses on evaluating the role of free auxins and oxidative enzymes on adventitious root formation of two olive cultivars with different rooting ability - ‘Galega vulgar’ (difficult-to-root) and ‘Cobrançosa’ (easy-to-root). In this context, free auxin levels and enzyme activities were determined in in vitro-cultured ‘Galega vulgar’ microshoots and in semi-hardwood cuttings of cvs. ‘Galega vulgar’ and ‘Cobrançosa’. To attain this goal, an analytical method for the quantification of free indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) was developed, which is based on dispersive liquid-liquid microextraction followed by microwave derivatization (DLLME-MAD) and gas chromatography-mass spectrometry (GC/MS) analysis. The developed method was validated in terms of linearity, recovery, limit of detection (LOD) and limit of quantification (LOQ) and proved to be useful in the analysis of two very different types of plant tissues. The results from auxin quantification in olive samples point at a relationship between free auxin levels and rooting ability of both microshoots and semihardwood cuttings. A defective IBA-IAA conversion, resulting in a peak of free IAA during initiation phase, seems to be associated with low rooting ability. Likewise, differences in the activity of oxidative enzymes also appear to be related with rooting ability. Higher polyphenol oxidases (PPO) activity is likely related with an easyto- root behavior, while the opposite is true for peroxidases (POX) (including IAA oxidase (IAAox)) activity. A possible hypothesis for adventitious root formation in olive microcuttings is presented herein for the first time. Free auxins, oxidative enzymes, alternative oxidase (AOX) and reactive oxygen species (ROS) are some of the factors that may be involved in this highly complex physiological process. Interestingly, while temporal changes in auxin levels were similar between microshoots and semihardwood cuttings, the conclusions obtained from enzyme activity results in microshoots didn’t translate to semi-hardwood tissues, showing the emerging need for adaptation of classical agronomical research studies to modern techniques; Resumo: Procurando compreender o papel das auxinas e enzimas oxidativas na formação de raízes adventícias em cultivares de oliveira (Olea europaea L.) A oliveira (Olea europaea L.) é uma das principais culturas da bacia Mediterrânica e é propagada maioritariamente por estacaria, um processo altamente dependente da capacidade das estacas para formar raízes adventícias. Enquanto algumas cultivares são fáceis de propagar desta forma, algumas das cultivares de oliveira mais interessantes são consideradas difíceis de enraizar, o que dificulta a sua preservação e comercialização e torna extremamente importante aprofundar o conhecimento sobre o enraizamento adventício desta espécie. Este trabalho foca-se na avaliação do papel das auxinas livres e das enzimas oxidativas na formação de raízes adventícias em duas cultivares de oliveira com diferente capacidade de enraizamento - ‘Galega vulgar’ (difícil de enraizar) e ‘Cobrançosa’ (fácil de enraizar). Neste contexto, determinaram-se os níveis de auxinas livres e as actividades de enzimas oxidativas em microestacas de ‘Galega vulgar’ cultivadas in vitro bem como em estacas semi-lenhosas das cvs. ‘Galega vulgar’ e ‘Cobrançosa’. Para tal foi necessário desenvolver uma metodologia analítica para a quantificação de ácido indol-3-acético (IAA) e ácido indol-3-butírico (IBA), baseada em microextracção dispersiva líquido-líquido (DLLME) seguida de derivatização em microondas (MAD) e análise por cromatografia gasosa acoplada a espectrometria de massa (GC/MS). O método desenvolvido foi validado em termos de linearidade, recuperação, limite de detecção (LOD) e limite de quantificação (LOQ), e mostrou-se eficaz na análise de dois tipos de tecidos vegetais bastante diferentes. Os resultados da análise de auxinas em amostras de oliveira apontam para uma possível relação entre os níveis de auxinas livres e a capacidade de enraizamento, tanto em microestacas como em estacas semi-lenhosas. Uma conversão IBA-IAA deficiente, que resulta num pico de IAA durante a fase de iniciação, parece estar associada à baixa capacidade de enraizamento. Por outro lado, a capacidade de enraizamento também parece estar relacionada com diferenças na actividade de enzimas oxidativas. Comportamentos fáceis de enraizar estão associados a actividade mais elevada das polifenoloxidases (PPO), enquanto o oposto é verdade para a actividade das peroxidases (POX) (incluindo a IAA oxidase (IAAox)). Neste trabalho propõe-se pela primeira vez uma possível explicação para o enraizamento adventício em microestacas de oliveira. Auxinas livres, enzimas oxidativas, oxidase alternativa (AOX) e espécies reactivas de oxigénio (ROS) são alguns dos factores envolvidos neste processo fisiológico altamente complexo. Curiosamente, enquanto as alterações temporais nos níveis de auxinas foram semelhantes entre microestacas e estacas semi-lenhosas, o mesmo não se observou relativamente à actividade enzimática, o que mostra a necessidade de adaptação dos estudos agronómicos tradicionais às técnicas correntes.
Resumo:
Doutoramento em Engenharia Agronómica - Instituto Superior de Agronomia - UL
Resumo:
The activity of oxidative enzymes and the levels of free auxins were determined during adventitious root formation in olive explants. Rooting trials were performed both with in vitro-cultured micro shoots of the cultivar ‘Galega Vulgar’, treated with indole-3-butyric acid (IBA) and with salicylhydroxamic acid(SHAM) + IBA, as well as with semi-hardwood cuttings of the cultivars ‘Galega Vulgar’ (difficult-to-root)and ‘Cobrançosa’ (easy-to-root), treated with IBA. The auxin (IBA) was used in all experiments as a rooting promoter, while SHAM was used in micropropagation trials as rooting inhibitor, providing a negative control. Free indole-3-acetic acid (IAA) and IBA concentrations were determined in microshoots, as well as in semi-hardwood cuttings, throughout the rooting period at pre-established time-points. At the sametime-points, the enzymatic activity of polyphenol oxidases (PPO), peroxidases (POX), and IAA oxidase(IAAox) was evaluated in the microshoots. Microshoots treated with SHAM + IBA revealed higher POX and IAAox activity, as well as lower PPO activity, than those treated only with IBA. IAA levels were higher in IBA-treated microshoots during induction phase, but lower during early initiation phase. Incontrast, free IBA levels were higher in microshoots treated with SHAM + IBA during induction, but lower during initiation. A similar pattern of free auxin levels was observed in semi-hardwood cuttings of the two contrasting cultivars under evaluation. The similarities found on the auxin patterns of microshoots treated with SHAM and those of semi-hardwood cuttings of the difficult-to-root olive cultivar allow considering SHAM a reliable control for when simulation of a difficult-to-root behavior is necessary. The inhibitory effect of SHAM in root formation could be related with 1) the inhibition of alternative oxidase(AOX), leading to a down regulation of phenylpropanoid biosynthetic pathways, which would decrease the concentration of phenolic substrates for PPO; 2) an increase in IAAox activity resulting in lower free IAA levels or; 3) a defective conversion of IBA into IAA.
Resumo:
Several studies have suggested that differences in the natural rooting ability of plant cuttings could be attributed to differences in endogenous auxin levels. Hence, during rooting experiments, it is important to be able to routinely monitor the evolution of endogenous levels of plant hormones. This work reports the development of a new method for the quantification of free auxins in auxin-treated Olea europaea (L.) explants, using dispersive liquid–liquid microextraction (DLLME) and microwave assisted derivatization (MAD) followed by gas chromatography/mass spectrometry (GC/MS) analysis. Linear ranges of 0.5–500 ng mL 1 and 1–500 mg mL 1 were used for the quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), respectively. Determined by serial dilutions, the limits of detection (LOD) and quantification (LOQ) were 0.05 ng mL 1 and 0.25 ng mL 1, respectively for both compounds. When using the calibration curve for determination, the LOQ corresponded to 0.5 ng mL 1 (IAA) and 0.5 mg mL 1 (IBA). The proposed method proved to be substantially faster than other alternatives, and allowed free auxin quantification in real samples of semi-hardwood cuttings and microshoots of two olive cultivars. The concentrations found in the analyzed samples are in the range of 0.131–0.342 mg g 1 (IAA) and 20–264 mg g 1 (IBA).
Resumo:
Excised shoot tips of Cuscuta reflexa Roxb. (dodder), a rootless and leafless angiospermic plant parasite, were cultured in vitro for the study of the control of lateral bud development by the apex. In a chemically defined medium lacking hormones, the basal bud alone developed into a shoot. The addition of coconut milk to the growth medium induced the activation of multiple lateral buds, but only a single bud developed further into a shoot. The decapitation of this shoot induced the development of another shoot and the process could be repeated. This showed the controlling effect of the apex in correlative control of bud development. Application of indole-3-acetic acid to the shoot tip explant delayed the development of the lateral bud. Gibberellic acid A3 induced a marked elongation growth of the explant and reinforced apical dominance. The direct application of cytokinin to an inhibited bud relieved it from apical dominance. A basipetally decreasing concentration gradient of auxin may prevail at the nodes. Bud outgrowth is probably stimulated by cytokinin produced locally in the bud.
Resumo:
The objective of this study was to develop a rapid and efficient system for regenerating shoots from nodal explants of scented geranium (Pelargonium graveolens L. Her. ex Ait: syn. P. roseum willd). Single node stem explants were inoculated in MS media containing different combinations of 6-benzylaminopurine (BAP) with indole-3-acetic acid (IAA) or naphthalene acetic acid (NAA) (0, 0.5, 1.0, 2.0 mg/l) in a 4x4 factorial experiment. Multiple shoots were induced in media supplemented with BAP and IAA, Maximum number of shoots (56 per explant) were observed in the medium containing BAP and IAA at 1 mg/l each, 30 days after inoculation. Micro shoots were subcultured once in every four weeks. Adventitious shoots were induced from in vitro grown leaves and petioles. Several regenerated shoots were rooted on MS half-strength medium supplemented with 0.5 mg/l indole-3-butyric acid (IBA) and the plantlets were hardened in the growth chamber. This micropropagation system could be used for rapid and large-scale production of scented geranium.
Resumo:
Complete plants were regenerated from in vitro cultured immature cotyledon segments of groundnut (Arachis hypogaea L. cv. TMV-7) by organogenesis. Callus cultures were best Initiated from immature cotyledon segments on MS (Murashige and Skoog) salts containing B5 vitamins supplemented with indole-3-acetic acid (IAA) and alpha -naphthalene acetic acid (NAA; 4.0 mg L-1) and kinetin (KIN; 0.5 L-1). Calluses were transferred to a medium containing KIN (2.0 mg L-1) and IAA and NAA (0.5 mg L-1) for shoot Initiation. The regenerated shoots were transferred to a medium containing Indole-3-butyric acid (IBA; 2.0 mg L-1) and KIN (0.2 mg L-1) for developing roots. In vitro produced plantlets developed sucessfully, matured, and set seed. The protein profiles [sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE)] of callus, callus with shoot, and callus with shoot and root showed differences.
Resumo:
Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth.