931 resultados para In-cell
Resumo:
先前的研究表明,肿瘤细胞中survivin的高表达与细胞对高传能线密度(LET)射线的辐射抗性相关。研究了survivin表达在高LET射线诱导的细胞凋亡中的作用,发现抑制survivin表达对高LETC离子辐射诱导的Bcl-2和Bax表达没有明显的影响。在高LET射线辐照中,survivin可能通过抑制caspase-3和-9活性的途径,抑制了细胞凋亡。
Resumo:
A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH. Simulation results show that this R,FQ structure is characterized by stable values of beam transmission efficiency (at least 95%) for both zero-current mode and the space charge dominated regime. The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions, and could easily be accepted by Drift Tube Linac (DTL). The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.
Resumo:
Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).
Resumo:
During bacterial growth, a cell approximately doubles in size before division, after which it splits into two daughter cells. This process is subjected to the inherent perturbations of cellular noise and thus requires regulation for cell-size homeostasis. The mechanisms underlying the control and dynamics of cell size remain poorly understood owing to the difficulty in sizing individual bacteria over long periods of time in a high-throughput manner. Here we measure and analyse long-term, single-cell growth and division across different Escherichia coli strains and growth conditions. We show that a subset of cells in a population exhibit transient oscillations in cell size with periods that stretch across several (more than ten) generations. Our analysis reveals that a simple law governing cell-size control-a noisy linear map-explains the origins of these cell-size oscillations across all strains. This noisy linear map implements a negative feedback on cell-size control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller initial size tends to divide later. Combining simulations of cell growth and division with experimental data, we demonstrate that this noisy linear map generates transient oscillations, not just in cell size, but also in constitutive gene expression. Our work provides new insights into the dynamics of bacterial cell-size regulation with implications for the physiological processes involved.
Resumo:
Plasma ionization in the low-pressure operation regime ( $«$ 5 Pa) of RF capacitively coupled plasmas (CCPs) is governed by a complex interplay of various mechanisms, such as field reversal, sheath expansion, and wave–particle interactions. In a previous paper, it was shown that experimental observations in a hydrogen CCP operated at 13.56 MHz are qualitatively well described in a 1-D symmetrical particle-in-cell (PIC) simulation. In this paper, a spherical asymmetrical PIC simulation that is closer to the conditions of the highly asymmetrical experimental device is used to simulate a low-pressure neon CCP operated at 2 MHz. The results show a similar behavior, with pronounced ionization through field reversal, sheath expansion, and wave–particle interactions, and can be exploited for more accurate quantitative comparisons with experimental observations.
Resumo:
The use of microbeam approaches has been a major advance in probing the relevance of bystander and adaptive responses in cell and tissue models. Our own studies at the Gray Cancer Institute have used both a charged particle microbeam, producing protons and helium ions and a soft X-ray microprobe, delivering focused carbon-K, aluminium-K and titanium-K soft X-rays. Using these techniques we have been able to build up a comprehensive picture of the underlying differences between bystander responses and direct effects in cell and tissue-like models. What is now clear is that bystander dose-response relationships, the underlying mechanisms of action and the targets involved are not the same as those observed for direct irradiation of DNA in the nucleus. Our recent studies have shown bystander responses even when radiation is deposited away from the nucleus in cytoplasmic targets. Also the interaction between bystander and adaptive responses may be a complex one related to dose, number of cells targeted and time interval.
Resumo:
We have previously identified differentially expressed genes in cell models of diabetic nephropathy and renal biopsies. Here we have performed quantitative DNA methylation profiling in cell models of diabetic nephropathy. Over 3,000 CpG units in the promoter regions of 192 candidate genes were assessed in unstimulated human mesangial cells (HMCs) and proximal tubular epithelial cells (PTCs) compared to HMCs or PTCs exposed to appropriate stimuli. A total of 301 CpG units across 38 genes (similar to 20%) were identified as differentially methylated in unstimulated HMCs versus PTCs. Analysis of amplicon methylation values in unstimulated versus stimulated cell models failed to demonstrate a >20% difference between amplicons. In conclusion, our results demonstrate that specific DNA methylation signatures are present in HMCs and PTCs, and standard protocols for exposure of renal cells to stimuli that alter gene expression may be insufficient to replicate possible alterations in DNA methylation profiles in diabetic nephropathy.
Resumo:
BACKGROUND & AIMS: C/EBP alpha (cebpa) is a putative tumor suppressor. However, initial results indicated that cebpa was up-regulated in a subset of human hepatocellular carcinomas (HCCs). The regulation and function of C/EBP alpha was investigated in HCC cell lines to clarify its role in liver carcinogenesis. METHODS: The regulation of C/EBP alpha expression was studied by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blotting, immunohistochemistry, methylation-specific PCR, and chromatin immunoprecipitation assays. C/EBP alpha expression was knocked-down by small interfering RNA or short hairpin RNA. Functional assays included colony formation, methylthiotetrazole, bromodeoxyuridine incorporation, and luciferase-reporter assays. RESULTS: Cebpa was up-regulated at least 2-fold in a subset (approximately 55%) of human HCCs compared with adjacent non tumor tissues. None of the up-regulated samples were positive for hepatitis C infection. The HCC cell lines Hep3B and Huh7 expressed high, PLC/PRF/5 intermediate, HepG2 and HCC-M low levels of C/EBP alpha, recapitulating the pattern of expression observed in HCCs. No mutations were detected in the CEBP alpha gene in HCCs and cell lines. C/EBP alpha was localized to the nucleus and functional in Hep3B and Huh7 cells; knocking-down its expression reduced target-gene expression, colony formation, and cell growth, associated with a decrease in cyclin A and CDK4 concentrations and E2F transcriptional activity. Epigenetic mechanisms including DNA methylation, and the binding of acetylated histone H3 to the CEBP alpha promoter-regulated cebpa expression in the HCC cells. CONCLUSIONS: C/EBP alpha is up-regulated in a subset of HCCs and has growth-promoting activities in HCC cells. Novel oncogenic mechanisms involving C/EBP alpha may be amenable to epigenetic regulation to improve treatment outcomes.
Resumo:
Background/Aims: The chromosome locus 3p21.3 is a