928 resultados para In vivo characterization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DOMON domain is a domain widespread in nature, predicted to fold in a β-sandwich structure. In plants, AIR12 is constituted by a single DOMON domain located in the apoplastic space and is GPI-modified for anchoring to the plasma membrane. Arabidopsis thaliana AIR12 has been heterologously expressed as a recombinant protein (recAtAIR12) in Pichia pastoris. Spectrophotometrical analysis of the purified protein showed that recAtAir12 is a cytochrome b. RecAtAIR12 is highly glycosylated, it is reduced by ascorbate, superoxide and naftoquinones, oxidised by monodehydroascorbate and oxygen and insensitive to hydrogen peroxide. The addition of recAtAIR12 to permeabilized plasma membranes containing NADH, FeEDTA and menadione, caused a statistically significant increase in hydroxyl radicals as detected by electron paramagnetic resonance. In these conditions, recAtAIR12 has thus a pro-oxidant role. Interestingly, AIR12 is related to the cytochrome domain of cellobiose dehydrogenase which is involved in lignin degradation, possibly via reactive oxygen species (ROS) production. In Arabidopsis the Air12 promoter is specifically activated at sites where cell separations occur and ROS, including •OH, are involved in cell wall modifications. air12 knock-out plants infected with Botrytis cinerea are more resistant than wild-type and air12 complemented plants. Also during B. cinerea infection, cell wall modifications and ROS are involved. Our results thus suggest that AIR12 could be involved in cell wall modifying reactions by interacting with ROS and ascorbate. CyDOMs are plasma membrane redox proteins of plants that are predicted to contain an apoplastic DOMON fused with a transmembrane cytochrome b561 domain. CyDOMs have never been purified nor characterised. The trans-membrane portion of a soybean CyDOM was expressed in E. coli but purification could not be achieved. The DOMON domain was expressed in P. pastoris and shown to be itself a cytochrome b that could be reduced by ascorbate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cefepime is frequently prescribed to treat infections caused by AmpC-producing Gram-negative bacteria. CMY-2 is the most common plasmid-mediated AmpC (pAmpC) β-lactamase. Unfortunately, CMY variants conferring enhanced cefepime resistance are reported. Here, we describe the evolution of CMY-2 to an extended-spectrum AmpC (ESAC) in clonally identical E. coli isolates obtained from a patient. The CMY-2-producing E. coli (CMY-2-Ec) was isolated from a wound. Thirty days later, one CMY-33-producing E. coli (CMY-33-Ec) was detected in bronchoalveolar lavage. Two weeks before the isolation of CMY-33-Ec, the patient received cefepime.CMY-33-Ec and CMY-2-Ec were identical by rep-PCR, being of hyperepidemic ST131, but showed different β-lactam MICs (e.g., cefepime 16 vs. ≤0.5 μg/ml). Identical CMY-2-Ec isolates were also found in a rectal swab. CMY-33 differs from CMY-2 by a Leu293-Ala294 deletion. Expressed in E. coli DH10B, both CMYs conferred resistance to ceftazidime (≥256 μg/ml), but cefepime MICs were higher for CMY-33 than CMY-2 (8 vs. 0.25 μg/ml). The kcat/Km or kinact/KI (μM(-1) s(-1)) indicated that CMY-33 possesses an ESBL-like spectrum compared to CMY-2 (cefoxitin: 0.2 vs. 0.4; ceftazidime: 0.2 vs. not measurable; cefepime: 0.2 vs. not measurable; tazobactam 0.0018 vs. 0.0009). Using molecular modeling, we show that a widened active site (∼4 Å shift) may play a significant role in enhancing cefepime hydrolysis. This is the first in vivo demonstration of a pAmpC that under cephalosporin treatment expands its substrate spectrum resembling an ESBL. The prevalence of CMY-2-Ec isolates is rapidly increasing worldwide, therefore awareness that cefepime treatment may select for resistant isolates is critical.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) by at least 2 orders of magnitude (P<0.001; N = 8) with an accompanying 196-fold enrichment of CFU-F frequency. Purified BM stromal and vascular endothelial cell populations are readily obtained by FACS. A detailed immunophenotypic analysis of lineage depleted BM identified PDGFRαβPOS stromal cell subpopulations distinguished by their expression of CD105. Both subpopulations retained their original phenotype of CD105 expression in culture and demonstrate MSC properties of multi-lineage differentiation and the ability to transfer the hematopoietic microenvironment in vivo. To determine the capacity of either subpopulation to support long-term multi-lineage reconstituting HSCs, we fractionated BM stromal cells into either the LinNEGPDGFRαβPOSCD105POS and LINNEGPDGFRαβPOSCD105LOW/- populations and tested their capacity to support LT-HSC by co-culturing each population with either 1 or 10 HSCs for 10 days. Following the 10 day co-culture period, both populations supported transplantable HSCs from 10 cells/well co-cultures demonstrating high levels of donor repopulation with an average of 65+23.6% chimerism from CD105POS co-cultures and 49.3+19.5% chimerism from the CD105NEG co-cultures. However, we observed a significant difference when mice were transplanted with the progeny of a single co-cultured HSC. In these experiments, CD105POS co-cultures (100%) demonstrated long-term multi- lineage reconstitution, while only 4 of 8 mice (50%) from CD105NEG -single HSC co-cultures demonstrated long-term reconstitution, suggesting a more limited expansion of functional stem cells. Taken together, these results demonstrate that the PDGFRαβCD105POS stromal cell subpopulation is distinguished by a unique capacity to support the expansion of long-term reconstituting HSCs in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2F is a heterodimeric transcription factor that regulates the expression of genes at the G1/S boundary and is composed of two related but distinct families of proteins, E2F and DP. E2F/DP heterodimers form complexes with the retinoblastoma (Rb) protein, the Rb-related proteins p107 and p130, and cyclins/cdks in a cell cycle-dependent fashion in vivo. E2F is encoded by at least five closely related genes, E2F-1 through -5. Here we report studies of DP-2, the second member of the DP family of genes. Our results indicate that (i) DP-2 encodes at least five distinct mRNAs, (ii) a site of alternative splicing occurs within the 5' untranslated region of DP-2 mRNA, (iii) at least three DP-2-related proteins (of 55, 48, and 43 kDa) are expressed in vivo, (iv) each of these proteins is phosphorylated, and (v) one DP-2 protein (43 kDa) carries a truncated amino terminus. Our data also strongly suggest that the 55-kDa DP-2-related protein is a novel DP-2 isoform that results from alternative splicing. Thus, we conclude that DP-2 encodes a set of structurally, and perhaps functionally, distinct proteins in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biocompatible and biodegradable polymer, termed poly(Glycerol malate co-dodecanedioate) (PGMD), was prepared by thermal condensation method and used for fabrication of nanoparticles (NPs). PGMD NPs were prepared using the single oil emulsion technique and loaded with an imaging/hyperthermia agent (IR820) and a chemotherapeutic agent (doxorubicin, DOX). The size of the void PGMD NPs, IR820-PGMD NPs and DOX-IR820-PGMD NPs were approximately 90 nm, 110 nm, and 125 nm respectively. An acidic environment (pH=5.0) induced higher DOX and IR820 release compared to pH=7.4. DOX release was also enhanced by exposure to laser, which increased the temperature to 42°C. Cytotoxicity of DOX-IR820-PGMD NPs was comparable in MES-SA but was higher in Dx5 cells compared to free DOX plus IR820 (p<0.05). The combination of hyperthermia (HT) and chemotherapy improved cytotoxicity in both cell lines. We also explored the cellular response after rapid, short-term and low thermal dose (laser/Dye/NP) induced-heating, and compared it to slow, long-term and high thermal dose cell incubator heating by investigating the reactive oxygen species (ROS) level, hypoxia-inducible factor-1&agr; (HIF-1&agr;) and vascular endothelial growth factor (VEGF) expression. The cytotoxicity of IR820-PGMD NPs after laser/Dye/NP HT resulted in higher cancer cell killing compared to incubator HT. ROS level, HIF-1&agr; and VEGF expression were elevated under incubator HT, while maintained at the baseline level under the laser/Dye/NP HT. In vivo mouse studies showed that NP formulation significantly improved the plasma half-life of IR820 after tail vein injection. Significant lower IR820 content was observed in kidney in DOX-IR820-PGMD NP treatment as compared to free IR820 treatment in our biodistribution studies (p<0.05). In conclusion, both IR820-PGMD NPs and DOX-IR820-PGMD NPs were successfully developed and used for both imaging and therapeutic purposes. Rapid and short-term laser/Dye/NP HT, with a low thermal dose, did not up-regulate HIF-1&agr; and VEGF expression, whereas slow and long-term incubator HT, with a high thermal dose, can enhance expression of both HIF-1&agr; and VEGF.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel biocompatible and biodegradable polymer, termed poly(Glycerol malate co-dodecanedioate) (PGMD), was prepared by thermal condensation method and used for fabrication of nanoparticles (NPs). PGMD NPs were prepared using the single oil emulsion technique and loaded with an imaging/hyperthermia agent (IR820) and a chemotherapeutic agent (doxorubicin, DOX). The size of the void PGMD NPs, IR820-PGMD NPs and DOX-IR820-PGMD NPs were approximately 90 nm, 110 nm, and 125 nm respectively. An acidic environment (pH=5.0) induced higher DOX and IR820 release compared to pH=7.4. DOX release was also enhanced by exposure to laser, which increased the temperature to 42°C. Cytotoxicity of DOX-IR820-PGMD NPs was comparable in MES-SA but was higher in Dx5 cells compared to free DOX plus IR820 (pIn vivomouse studies showed that NP formulation significantly improved the plasma half-life of IR820 after tail vein injection. Significant lower IR820 content was observed in kidney in DOX-IR820-PGMD NP treatment as compared to free IR820 treatment in our biodistribution studies (p

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object. Individuals with carotid atherosclerosis develop symptoms following rupture of vulnerable plaques. Biomechanical stresses within this plaque may increase vulnerability to rupture. In this report the authors describe the use of in vivo carotid plaque imaging and computational mechanics to document the magnitude and distribution of intrinsic plaque stresses. Methods. Ten (five symptomatic and five asymptomatic) individuals underwent plaque characterization magnetic resonance (MR) imaging. Plaque geometry and composition were determined by multisequence review. Intrinsic plaque stress profiles were generated from 3D meshes by using finite element computational analysis. Differences in principal (shear) stress between normal and diseased sections of the carotid artery and between symptomatic and asymptomatic plaques were noted. Results. There was a significant difference in peak principal stress between diseased and nondiseased segments of the artery (mean difference 537.65 kPa, p < 0.05). Symptomatic plaques had higher mean stresses than asymptomatic plaques (627.6 kPa compared with 370.2 kPa, p = 0.05), which were independent of luminal stenosis and plaque composition. Conclusions. Significant differences in plaque stress exist between plaques from symptomatic individuals and those from asymptomatic individuals. The MR imaging-based computational analysis may therefore be a useful aid to identification of vulnerable plaques in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O gênero Pterodon pertence à família das Papilonaceas e inclui cinco espécies nativas do Brasil: P. pubescens Benth., P. emarginatus Vog., P. apparicioi Pedersoli e P. abruptus Benth., sendo a espécie objeto deste estudo a P. polygalaeflorus Benth.. Seus frutos são livremente comercializados em mercados da flora medicinal e utilizados pela medicina popular devido a propriedades anti-reumática, analgésica, antiinflamatória, dentre outros efeitos associados a esses frutos. O principal uso popular está relacionado ao efeito antiartrítico que parece se encontrar na fração oleosa do fruto. O objetivo deste trabalho foi avaliar o extrato etanólico de Pterodon polygalaeflorus (EEPpg) quanto ao seu potencial antiinflamatório crônico através do modelo de artrite induzida por colágeno (CIA) e seu efeito sobre os linfócitos in vitro, bem como sobre a expansão de células MAC-1+ induzida por adjuvante completo de Freund (AFC). A caracterização química do EEPpg foi realizada por cromatografia em camada delgada (TLC), cromatografia líquida de alta performance (HPLC) e cromatografia gasosa acoplada a espectrômetro de massa (GC-MS), através dos quais uma gama de compostos, incluindo terpenóides de polaridades variadas e flavonóides, foram observados. No modelo de CIA, o EEPpg reduziu significativamente parâmetros associados ao desenvolvimento e progressão da doença e à severidade da doença , inibindo em até 99% o seu desenvolvimento e levando a ausência de sinais clínicos evidentes após tratamento com as menores doses do extrato (0,01 mg/kg e 0,001 mg/kg). O tratamento com EEPpg também reduziu características histopatológicas típicas de articulações de animais com CIA, que também são observadas na artrite reumatóide. O EEPpg reduziu significativamente o peso dos linfonodos dos camundongos, bem como o número absoluto de segmentados, monócitos e linfócitos no sangue. In vitro, O EEPpg mostrou uma atividade anti-proliferativa dos esplenócitos estimulados com concanavalina A (Con A) ou lipopolissacarídeo (LPS) analisada através do ensaio de redução do sal de tetrazólio MTT, corroborada pelo seu efeito sobre o ciclo celular de linfócitos estimulados com Con A, onde o EEPpg nas concentrações de 5, 10 e 20 μg/mL reduziu significativamente, de maneira concentração-dependente, o número de células nas fases S+G2/M e aumentou na fase G0/G1 do ciclo celular. O efeito anti-proliferativo do EEPpg parece também estar associado ao aumento da apoptose dos linfócitos após estimulação com Con A, com aumento estatisticamente significativo no percentual de células mortas por apoptose nas maiores concentrações . O EEPpg inibiu a expansão de células Mac-1+ induzida por AFC no baço, porém não no peritônio. Esse resultado sugere um efeito inibidor do EEPpg sobre a migração celular para as articulações artríticas. Esses resultados contribuem para a validação do uso popular de P. polygalaeflorus contra doenças relacionadas a processos inflamatórios e imunes, sobretudo na artrite reumatóide, antes nunca demonstrado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibitors of Gly transporter type-1 (GlyT1) for the treatment of schizophrenia have been pursued on the basis of the NMDA receptor (R) hypofunction hypothesis, which stems largely from the observation that NMDAR antagonists induce symptoms that more closely mimic those characteristic of schizophrenia than do other classes of psychotic agents. GlyT1 is responsible for uptake of synaptic Gly, an NMDAR co-agonist amino acid, in neuronal populations throughout the forebrain. GlyT1 inhibition thereby potentiates NMDAR activity by increasing synaptic Gly levels. Correspondingly, a large body of data suggests that GlyT1 inhibitors likely confer more comprehensive symptom alleviation than current antipsychotics. To date, a number of small-molecule GlyT1 inhibitors have been reported by the pharmaceutical industry. Developments in the discovery and characterization of GlyT1 inhibitors are discussed in this review.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticles offer alternative options in cancer therapy both as drug delivery carriers and as direct therapeutic agents for cancer cell inactivation. More recently, gold nanoparticles (AuNPs) have emerged as promising radiosensitizers achieving significantly elevated radiation dose enhancement factors when irradiated with both kilo-electron-volt and mega-electronvolt X-rays. Use of AuNPs in radiobiology is now being intensely driven by the desire to achieve precise energy deposition in tumours. As a consequence, there is a growing demand for efficient and simple techniques for detection, imaging and characterization of AuNPs in both biological and tumour samples. Spatially accurate imaging on the nanoscale poses a serious challenge requiring high- or super-resolution imaging techniques. In this mini review, we discuss the challenges in using AuNPs as radiosensitizers as well as various current and novel imaging techniques designed to validate the uptake, distribution and localization in mammalian cells. In our own work, we have used multiphoton excited plasmon resonance imaging to map the AuNP intracellular distribution. The benefits and limitations of this approach will also be discussed in some detail. In some cases, the same "excitation" mechanism as is used in an imaging modality can be harnessed tomake it also a part of therapymodality (e.g. phototherapy)-such examples are discussed in passing as extensions to the imaging modality concerned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Biologia Celular e Molecular), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dock1 (aussi nommé Dock180) est le membre prototypique de la famille Dock d’activateurs des petites GTPases de la famille Rho. Dock1 agit au sein d’une voie de signalisation conservée au cours de l’évolution et des études génétiques ont démontré que les orthologues de Dock1, myoblast city (mbc) chez la drosophile et Ced-5 chez le nématode, activent Rac dans divers processus biologiques. Notamment, mbc est un important régulateur de la fusion des myoblastes lors de la formation des fibres musculaires de drosophile. Mbc est aussi essentiel à la migration collective d’un groupe de cellules, appelées cellules de bordures, lors de leur migration dans la chambre de l’oeuf suite à l’activation de récepteurs à activité tyrosine kinase (RTK). La migration collective des cellules de bordures récapitule certains des événements observés lorsque des cellules tumorales envahissent le tissu environnant lors de la formation de métastases. Chez les mammifères, des études réalisées en lignées cellulaires suggèrent que Dock1 est aussi un régulateur du cytosquelette lors de la migration cellulaire. De plus, certaines études ont démontré que la voie Dock1/Rac agit en aval de RTKs lors de l’invasion de cellules de glioblastome. Néanmoins, les fonctions in vivo de Dock1 chez les mammifères demeurent méconnues et le but de cette thèse est d’identifier et de caractériser certaines de ses fonctions. Guidés par la fonction de mbc, nous démontrons dans l’objectif no 1 un rôle essentiel pour ce gène au cours du développement embryonnaire grâce à la caractérisation d’une souris Dock1 knock-out. Des défauts sévères de fusion des myoblastes sont observés en absence de l’expression de Dock1 et ils contribuent à la réduction de la masse musculaire des souris mutantes. De plus, nous avons constaté une contribution du gène Dock5, un membre de la famille Dock proche de Dock1, au développement des fibres musculaires. Dans l’objectif no 2, nous avons observé que des hauts niveaux d’expression de DOCK1 corrèlent avec un mauvais pronostic chez les patientes atteintes de cancer du sein possédant une forte expression du gène codant pour le RTK HER2. Une surexpression ou une amplification du locus codant pour le récepteur HER2 est associée à près de 20% des cas de cancer du sein. Les cancers de ces patientes développent fréquemment des métastases et sont associés à un mauvais pronostic. Des études biochimiques ont révélé que DOCK1 interagit avec le récepteur HER2 dans des cellules de cancer du sein. De plus, DOCK1 est essentiel à l’activation de RAC et à la migration cellulaire induite par HER2 dans ces cellules. L’utilisation d’un modèle de cancer du sein médié par HER2 chez la souris combiné avec l’inactivation du gène Dock1 dans les glandes mammaires, nous a permis d’identifier Dock1 et Rac comme de nouveaux effecteurs de la croissance tumorale et de la formation de métastases régulées par l’oncogène HER2. Nous concluons que l’utilisation de différents modèles de souris knock-out pour le gène Dock1 nous a permis d’identifier des fonctions clés de ce gène. Tout comme son orthologue mbc, Dock1 joue un rôle important lors du développement embryonnaire en régulant notamment la fusion des myoblastes. Nos études ont également contribué à démontrer un important degré de conservation des mécanismes moléculaires de fusion entre les espèces. De plus, DOCK1 agit en aval du RTK HER2 et son expression dans les cellules épithéliales de glandes mammaires contribue au développement tumoral et à la formation de métastases induits par cet oncogène.