887 resultados para In silico analysis of Candida albicans promoter sequences
Resumo:
Candida albicans est une levure pathogène qui, à l’état commensal, colonise les muqueuses de la cavité orale et du tractus gastro-intestinal. De nature opportuniste, C. albicans cause de nombreuses infections, allant des candidoses superficielles (muguet buccal, vulvo-vaginite) aux candidoses systémiques sévères. C. albicans a la capacité de se développer sous diverses morphologies, telles que les formes levures, pseudohyphes et hyphes. Des stimuli environnementaux mimant les conditions retrouvées chez l’hôte (température de 37°C, pH neutre, présence de sérum) induisent la transition levure-à-hyphe (i.e. morphogenèse ou filamentation). Cette transition morphologique contribue à la pathogénicité de C. albicans, du fait que des souches présentant un défaut de filamentation sont avirulentes. Non seulement la morphogenèse est un facteur de virulence, mais elle constituerait aussi une cible pour le développement d’antifongiques. En effet, il a déjà été démontré que l’inhibition de la transition levure-à-hyphe atténuait la virulence de C. albicans lors d’infections systémiques. Par ailleurs, des études ont démontré que de nombreuses molécules pouvaient moduler la morphogenèse. Parmi ces molécules, certains acides gras, dont l’acide linoléique conjugué (CLA), inhibent la formation d’hyphes. Ainsi, le CLA posséderait des propriétés thérapeutiques, du fait qu’il interfère avec un déterminant de pathogénicité de C. albicans. Par contre, avant d’évaluer son potentiel thérapeutique dans un contexte clinique, il est essentiel d’étudier son mode d’action. Ce projet vise à caractériser l’activité anti-filamentation des acides gras et du CLA et à déterminer le mécanisme par lequel ces molécules inhibent la morphogenèse chez C. albicans. Des analyses transcriptomiques globales ont été effectuées afin d’obtenir le profil transcriptionnel de la réponse de C. albicans au CLA. L’acide gras a entraîné une baisse des niveaux d’expression de gènes encodant des protéines hyphes-spécifiques et des régulateurs de morphogenèse, dont RAS1. Ce gène code pour la GTPase Ras1p, une protéine membranaire de signalisation qui joue un rôle important dans la transition levure-à-hyphe. Des analyses de PCR quantitatif ont confirmé que le CLA inhibait l’induction de RAS1. De plus, le CLA a non seulement causé une baisse des niveaux cellulaires de Ras1p, mais a aussi entraîné sa délocalisation de la membrane plasmique. En affectant les niveaux et la localisation cellulaire de Ras1p, le CLA nuit à l’activation de la voie de signalisation Ras1p-dépendante, inhibant ainsi la morphogenèse. Il est possible que le CLA altère la structure de la membrane plasmique et affecte indirectement la localisation membranaire de Ras1p. Ces travaux ont permis de mettre en évidence le mode d’action du CLA. Le potentiel thérapeutique du CLA pourrait maintenant être évalué dans un contexte d’infection, permettant ainsi de vérifier qu’une telle approche constitue véritablement une stratégie pour le traitement des candidoses.
Resumo:
In this study, we describe the first survey in Thailand of Trypanosoma theileri, a widespread and prevalent parasite of cattle that is transmitted by tabanid flies. Investigation of 210 bovine blood samples of Thai cattle from six farms by hematocrit centrifuge technique (HCT) revealed 14 samples with trypanosomes morphologically compatible to T. theileri. Additional animals were positive for T. theileri by PCR based on the Cathepsin L-like sequence (TthCATL-PCR) despite negative by HCT, indicating cryptic infections. Results revealed a prevalence of 26 +/- 15% (95% CI) of T. theileri infection. Additionally, 12 samples positive for T. theileri were detected in cattle from other 11 farms. From a total of 30 blood samples positive by HCT and/or PCR from 17 farms, seven were characterized to evaluate the genetic polymorphism of T. theileri through sequence analysis of PCR-amplified CATL DNA sequences. All CATL sequences of T. theileri from Thai cattle clustered with sequences of the previously described phylogenetic lineages TthI and TthII, supporting only two major lineages of T. theileri in cattle around the world. However, 11 of the 29 CATL sequences analyzed showed to be different, disclosing an unexpectedly large polymorphic genetic repertoire, with multiple genotypes of T. theileri not previously described in other countries circulating in Thai cattle. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Leprosy is a complex infectious disease influenced by genetic and environmental factors. The genetic contributing factors are considered heterogeneous and several genes have been consistently associated with susceptibility like PARK2, tumor necrosis factor (TNF), lymphotoxin-alpha (LTA) and vitamin-D receptor (VDR). Here, we combined a case-control study (374 patients and 380 controls), with meta-analysis (5 studies; 2702 individuals) and biological study to test the epidemiological and physiological relevance of the interleukin-10 (IL-10) genetic markers in leprosy. We observed that the -819T allele is associated with leprosy susceptibility either in the case-control or in the meta-analysis studies. Haplotypes combining promoter single-nucleotide polymorphisms also implicated a haplotype carrying the -819T allele in leprosy susceptibility (odds ratio (OR) = 1.40; P = 0.01). Finally, we tested IL-10 production in peripheral blood mononuclear cells stimulated with Mycobacterium leprae antigens and found that -819T carriers produced lower levels of IL-10 when compared with noncarriers. Taken together, these data suggest that low levels of IL-10 during the disease outcome can drive patients to a chronic and unprotective response that culminates with leprosy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the effectiveness of ozonated water in the elimination of Candida albicans, Enterococcus faecalis, and endotoxins from root canals. Twenty-four single-rooted human teeth were inoculated with C. albicans and E. faecalis, and 24 specimens were inoculated with Escherichia coli endotoxin. Ozonated water (experimental group) or physiologic solution (control group) was used as irrigant agent. Antimicrobial effectiveness was evaluated by the reduction of microbial counts. Lipopolissacharide complex presence was assessed by limulus amebocyte lysate test and B-lymphocyte stimulation. Data were analyzed by Wilcoxon and Mann-Whitney tests (5%). Ozonated water significantly reduced the number of C. albicans and E. faecalis at the immediate sampling, but increased values were detected after 7 days. Ozonated water did not neutralize endotoxin. It could be concluded that ozonated water was effective against C. albicans and E. faecalis but showed no residual effect. No activity on endotoxin was observed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Experimental candidosis and recovery of Candida albicans from the oral cavity of ovariectomized rats
Resumo:
The aim of this study was to analyze the development of candidosis and the recovery of C. albicans from the oral cavity of ovariectomized and sham-ovariectomized rats. One hundred aiid twenty-four rats originally negative for Candida spp. in the oral cavity were divided into two groups: ovariectomized and sham-ovariectomized. Fifty-eight ovariectomized and the same quantity of sham-ovariectomized rats were inoculated with C. albicans for the study of candidosis development and recovery of yeast. Four animals from each group were not inoculated with yeast suspension and were submitted to tongue dorsum morphologic analysis by optical and scanning electron microscopy. The development of candidosis in the tongue dorsum was observed by optical and scanning electron microscopy in the periods of 6 hr, 24 hr, 7 days and 15 days after the last inoculation. Recovery of C. albicans was performed by oral samples plating on Sabouraud agar after 1,2, 5 and 7 days and progressively at each 15-day interval until negative cultures for yeasts were obtained. The results were analyzed by Mann-Whitney and Student's t tests. The tongue dorsum of sham-ovariectomized and ovariectomized rats, not infected by Candida, presented normal aspect. Among the infected rats, the ovariectomized group showed less occurrence of candidosis lesions and lower recovery of C. albicans from the oral cavity in relation to the sham-ovariectomized group. It could be concluded that candidosis was less frequent from the oral cavities of ovariectomized rats in relation to sham-ovariectomized.
Resumo:
New drug delivery systems, such as nanoemulsions (NE), have been developed to allow the use of hydrophobic drugs on the antimicrobial photodynamic therapy. This study evaluated the photodynamic potential of aluminum-chloride- phthalocyanine (ClAlPc) entrapped in cationic and anionic NE to inactivate Candida albicans planktonic cultures and biofilm compared with free ClAlPc. Fungal suspensions were treated with different delivery systems containing ClAlPc and light emitting diode. For planktonic suspensions, colonies were counted and cell metabolism was evaluated by XTT assay. Flow cytometry evaluated cell membrane damage. For biofilms, the metabolic activity was evaluated by XTT and ClAlPc distribution through biofilms was analyzed by confocal laser scanning microscopy (CLSM). Fungal viability was dependent on the delivery system, superficial charge and light dose. Free ClAlPc caused photokilling of the yeast when combined with 100 J cm-2. Cationic NE-ClAlPc reduced significantly both colony counts and cell metabolism (P < 0.05). In addition, cationic NE-ClAlPc and free ClAlPc caused significant damage to the cell membrane (P < 0.05). For the biofilms, cationic NE-ClAlPc reduced cell metabolism by 70%. Anionic NE-ClAlPc did not present antifungal activity. CLSM showed different accumulation on biofilms between the delivery systems. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. Candida albicans biofilm overview after 30 min of contact with free ClAlPc. This study presents the photodynamic potential of aluminum-chloride-phthalocyanine (ClAlPc) entrapped in cationic and anionic nanoemulsions (NE) to inactivate C. albicans planktonic cultures and biofilm comparing with free ClAlPc. The photodynamic effect was dependent on the delivery system, superficial charge and light dose. Cationic NE-ClAlPc and free ClAlPc caused significant reduction in colony counts, cell metabolism and damage to the cell membrane (P < 0.05). However, only the free ClAlPc was able to cause photokilling of the yeast. The anionic NE-ClAlPc did not present antifungal activity. Although NE system showed a lower activity for planktonic culture, cationic NE-ClAlPc showed better results for Candida biofilms. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.
Resumo:
In vitro investigations of curcumin-mediated photodynamic therapy (PDT) are encouraging, but there is a lack of reliable in vivo evidence of its efficacy. This study describes the photoinactivation of Candida albicans in a murine model of oral candidiasis, using curcumin as a photosensitizer. Forty immunosuppressed mice were orally inoculated with C. albicans and after five days, they received topical curcumin (20, 40 and 80 μM) and illumination with LED light. The use of curcumin or light alone were also investigated. Positive control animals did not receive any treatment and negative control animals were not inoculated with C. albicans. The number of surviving yeast cells was determined and analyzed by ANOVA and Tukey's post-hoc test (α = 0.05). Histological evaluation of the presence of yeast and inflammatory reaction was also conducted. All exposures to curcumin with LED light caused a significant reduction in C. albicans viability after PDT, but the use of 80 μM curcumin associated with light was able to induce the highest log10 reduction in colony counts (4 logs). It was concluded that curcumin-mediated PDT proved to be effective for in vivo inactivation of C. albicans without harming the host tissue of mice. © 2013 ISHAM.
Resumo:
Candida albicans is an opportunistic yeast that can cause oral candidosis through the formation of a biofilm, an important virulence factor that compromises the action of antifungal agents. The objective of this study was to compare the effect of rose bengal (RB)- and eosin Y (EY)-mediated photodynamic inactivation (PDI) using a green light-emitting diode (LED; 532 ± 10 nm) on planktonic cells and biofilms of C. albicans (ATCC 18804). Planktonic cultures were treated with photosensitizers at concentrations ranging from 0.78 to 400 μM, and biofilms were treated with 200 μM of photosensitizers. The number of colony-forming unit per milliliter (CFU/mL) was compared by analysis of variance and Tukey's test (P ≤ 0.05). After treatment, one biofilm specimen of the control and PDI groups were examined by scanning electron microscopy. The photosensitizers (6.25, 25, 50, 200, and 400 μM of EY, and 6.25 μM of RB or higher) significantly reduced the number of CFU/mL in the PDI groups when compared to the control group. With respect to biofilm formation, RB- and EY-mediated PDI promoted reductions of 0.22 log10 and 0.45 log10, respectively. Scanning electron microscopy showed that the two photosensitizers reduced fungal structures. In conclusion, EY- and RB-mediated PDI using LED irradiation significantly reduced C. albicans planktonic cells and biofilms. © 2013 Springer-Verlag London.