991 resultados para Implant supported prosthesis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
doi: 10.1111/j.1741-2358.2012.00636.x Hyperbaric oxygen therapy treatment for the fixation of implant prosthesis in oncology patients irradiated Objectives: This study aimed to present a clinical report of an irradiated oncologic patient who underwent hyperbaric oxygen therapy to be rehabilitated with implant-supported prosthesis. Materials and Methods: A 67-year-old man was admitted at Oral Oncology Center (FOA-UNESP) presenting a lesion on the mouth floor. After clinical evaluation, incisional biopsy and histopathological exam, a grade II squamous cell carcinoma was diagnosed. The patient was subjected to surgery to remove the lesion and partial glossectomy. Afterwards, the radiotherapy, in the left/right cervicofacial area of the supraclavicular fossa, was conducted. After 3 years of the surgery, the patient was submitted to hyperbaric oxygen therapy. Then, four implants were installed in patients mandible. Five months later, an upper conventional complete denture and lower full-arch implant-supported prosthesis were fabricated. Conclusion: The treatment resulted in several benefits such as improving his chewing efficiency, swallowing and speech, less denture trauma on the mucosa and improving his self-esteem.
Resumo:
Osseointegrated implants in craniofacial reconstructions improve prostheses retention and stability and comfort and safety for a patient. According to biomechanical principles, the treatment success regarding osseointegration maintenance depends on an adequate surgical technique associated to a retention system that provides favorable tension distribution to implants. Furthermore, patient expectation, esthetics, function, and anatomic limitations must be evaluated during treatment planning. Therefore, the aims of this study were to present available retention systems to implant-supported craniofacial prosthesis and to highlight the advantages, indications, and limitations. A literature review was conducted through a MEDLINE search. Sixteen articles and 2 textbooks met the inclusion criteria and were included in the review. It was concluded that the success of craniofacial rehabilitation with implants depends on an adequate surgical technique and an adequate selection of a retention system.
Resumo:
Purpose: Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Materials and Methods: Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 pm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 pm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 pm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. Results: The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. Conclusions: The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:788-796
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This study investigated the effect of porcelain firing on the misfit of implant-supported frameworks and analyzed the influence of preheat treatment on the dimensional alterations.Materials and Methods: Four external-hex cylindrical implants were placed in polyurethane block. Ten frameworks of screw-retained implant-supported prostheses were cast in Pd-Ag using 2 procedures: (1) control group (CG, n = 5): cast in segments and laser welded; and test group (TG, n = 5): cast in segments, preheated, and laser welded. All samples were subjected to firing to simulate porcelain veneering firing. Strain gauges were bonded around the implants, and microstrain values (mu epsilon = 10(-6)epsilon) were recorded after welding (M1), oxidation cycle (M2), and glaze firing (M3). Data were statistically analyzed (2-way analysis of variance, Bonferroni, alpha = 0.05).Results: The microstrain value in the CG at M3 (475.2 mu epsilon) was significantly different from the values observed at M1 (355.6 mu epsilon) and M2 (413.9 mu epsilon). The values at M2 and M3 in the CG were not statistically different. Microstrain values recorded at different moments (M1: 361.6 mu epsilon/M2: 335.3 mu epsilon/M3: 307.2 mu epsilon) did not show significant difference.Conclusions: The framework misfit deteriorates during firing cycles of porcelain veneering. Metal distortion after porcelain veneering could be controlled by preheat treatment. (Implant Dent 2012;21:225-229)
Prosthetic rehabilitation of a bone defect with a teeth-implant supported, removable partial denture
Resumo:
The use of teeth-implant, mucosa-supported removable dentures for rehabilitation of partially edentulous patients involves highly complex biomechanical aspects. This type of prosthesis associates 3 kinds of support that react differently to the functional and parafunctional forces developed in the oral cavity. Although the construction of removable partial dentures may seem paradoxical when osseointegrated implants are placed, in some cases, this option is an excellent alternative to solve difficulties related to the anatomic, biologic, psychomotor, and financial conditions of the patient. This article reports on a case in which a teeth-implant, mucosa-supported removable partial denture was the option of choice for a patient with financial and anatomic limitations, having a large structural loss of the residual alveolar ridge caused by trauma by a gunshot injury at the mandible. The 5-year follow-up did not reveal any type of biomechanical or functional problem. Copyright © 2006 by Lippincott Williams and Wilkins.
Resumo:
The aim of this study was to evaluate the efficacy of a pouring technique for implant-supported prostheses impressions. A metallic matrix (control group) with two implants positioned at 90 and 65 degrees was fabricated. The matrix was submitted to the direct transfer impression technique. In group CP (conventional pouring - n = 10), casts were obtained by the conventional pouring technique. In group EP (experimental pouring - n = 10), the analogs were embraced with latex tubes before the first pouring and then submitted to a second pouring. Vertical misfit and implants/analogs inclinations were evaluated. Data were analyzed by analysis of variance and Tukey's test (p < .05). Results demonstrated significant difference (p < .05) between control and experimental groups for misfit measurement in perpendicular implant/analog and between control group and group EP in leaning implant/analog. Considering inclination, there were significant differences (p < .05) between control and experimental groups for leaning analogs. Independently of the pouring technique, perpendicular implants produced more accurate casts.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n = 5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 με) and point D the highest (442.77 με). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.
Resumo:
The treatment of extensive pathologic lesions in the jaw, most of the time, can generate rehabilitation problems to the patient. The solid ameloblastoma is a locally invasive odontogenic tumor with a high recurrence rate. Its treatment is aggressive and accomplished through resection with safety margin. The criterion standard for reconstruction is autogenous bone, but it can provide a high degree of resorption, causing inconvenience to the patient because of lack of rehabilitative option. This study aimed to describe a patient with ameloblastoma treated through resection and reconstruction with autogenous bone graft, in which, after an extensive resorption of the graft was made, a modified bar was applied to support a prosthetic implant overdenture. Copyright © 2013 by Mutaz B. Habal, MD.
Resumo:
Moderate and controlled loading environments support or enhance osteogenesis, and, consequently, a high degree of bone-to-implant contact can be acquired. This is because when osteoprogenitor cells are exposed to limited physical deformation, their differentiation into osteoblasts is enhanced. Then, some range of microstrain is considered advantageous for bone ingrowth and osseointegration. The primary stability has been considered one of the main clinical means of controlling micromotion between the implant and the forming interfacial tissue, which helps to establish the proper mechanical environment for osteogenesis. Based on the biological aspects of immediate loading (IL), the objective of this study is to present a clinical case of maxillary arch rehabilitation using immediate loading with implant-supported fixed restoration after bone graft. Ten dental implants were placed in the maxilla 6 months after the autogenous bone graft, removed from the mandible (bilateral oblique line and chin), followed by the installation of an immediate-load fixed cross-arch implant-supported restoration because primary stability was reached for 8 implants. In addition, instructions about masticatory function and how it is related to interfacial micromotion were addressed and emphasized to the patient. The reasons for the IL were further avoidance of an interim healing phase, a potential reduction in the number of clinical interventions for the patient, and aesthetic reasons. After monitoring the rehabilitation for 8 years, the authors can conclude that maxillary IL can be performed followed by a well-established treatment planning based on computed tomography, providing immediate esthetics and function to the patient even when autogenous bone graft was previously performed in the maxilla.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective The objective of this article is to present options of rehabilitation with dental implants in two cases of severely atrophic mandibles (<10 mm) after rigid internal fixation of fractures. Patients and method Two patients who sustained fractures in severely atrophic mandibles with less than 10 mm of bone height were treated by open reduction and internal fixation through a transcervical access. Internal fixation was obtained with 2.4-mm locking reconstruction plates. The first patient presented satisfactory bone height at the area between the mental foramens and after 2 years, received flapless guided implants in the anterior mandible and an immediate protocol prosthesis. The second patient received a tent pole iliac crest autogenous graft after 2 years of fracture treatment and immediate implants. After 5 months, a protocol prosthesis was installed in the second patient. Results In both cases, the internal fixation followed AO principles for load-bearing osteosynthesis. Both prosthetic devices were Branemark protocol prosthesis. The mandibular reconstruction plates were not removed. Both patients are rehabilitated without complications and satisfied with esthetic and functional results. Conclusion With the current techniques of internal fixation, grafting, and guided implants, the treatment of atrophic mandible fractures can achieve very good results, which were previously not possible.
Resumo:
The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.
Resumo:
The application of implant-borne rehabilitations in residual alveolar ridges may be restricted by various anatomic conditions, as available bone height and characteristics. Here we report the clinical outcome of implants placed in severely resorbed posterior ridges, in addition to various implant-supported treatment modalities. Extra Oral implants (Straumann, Basel, Switzerland) with the intraosseous length of 2.5–5mm were installed in the posterior alveolar ridges. Following the healing period of 4–6 months, implants were exposed and included in the distal extensions of fixed and removable prosthesis. At recall appointments were collected surgical, clinical and radiological variables, including the evidence of adverse effects. An 8-years life table analysis was calculated. The treatment protocol was applied in thirty-five patients, presenting 31 removable and 4 fixed complete implant-supported dentures. A total of 61 Extra Oral implants were placed posterior to the distal implants, at the mean distance of 29.8mm (range 15.6–62.7mm). Three implants failed during the osteointegration phase, yielding an 8-year cumulative success rate of 92.24%. Following the osteointegration period, no major bone loss or other adverse events were found. The clinical results indicated that the Extra Oral implants may be successfully used in addition to the other, longer implants. Thus, a relatively long extension in the posterior region may be employed. With careful preoperative planning, this technique offers a simple and beneficial complementary treatment option for removable and fixed complete dentures.