889 resultados para Impedance Measurement
Resumo:
This paper presents a new respiratory impedance estimator to minimize the error due to breathing. Its practical reliability was evaluated in a simulation using realistic signals. These signals were generated by superposing pressure and flow records obtained in two conditions: 1) when applying forced oscillation to a resistance- inertance- elastance (RIE) mechanical model; 2) when healthy subjects breathed through the unexcited forced oscillation generator. Impedances computed (4-32 Hz) from the simulated signals with the new estimator resulted in a mean value which was scarcely biased by the added breathing (errors less than 1 percent in the mean R, I , and E ) and had a small variability (coefficients of variation of R, I, and E of 1.3, 3.5, and 9.6 percent, respectively). Our results suggest that the proposed estimator reduces the error in measurement of respiratory impedance without appreciable extracomputational cost.
Resumo:
Abstract
Resumo:
In this paper we present a versatile and easy-to-assemble measurement system for structural health monitoring (SHM) based on the electromechanical impedance (EMI) technique. The hardware of the proposed system consists only of a common data acquisition (DAQ) device with external resistors and allows real-time data acquisition from multiple sensors. Besides the low-cost compared to conventional impedance analyzers, the hardware and the software are simple and easier to implement than other measurement systems that have been recently proposed.
Resumo:
Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study therefore aims to extend a previously reported frequency filtering technique to a spontaneously breathing cohort and assess the regional distributions of ventilation and perfusion and their relationship. Methods Ten healthy adults were measured during a breath hold and while spontaneously breathing in supine, prone, left and right lateral positions. EIT data were analysed with and without filtering at the respiratory and heart rate. Profiles of ventilation, perfusion and ventilation/perfusion related impedance change were generated and regions of ventilation and pulmonary perfusion were identified and compared. Results Analysis of the filtration technique demonstrated its ability to separate the ventilation and cardiac related impedance signals without negative impact. It was, therefore, deemed suitable for use in this spontaneously breathing cohort. Regional distributions of ventilation, perfusion and the combined ΔZV/ΔZQ were calculated along the gravity axis and anatomically in each position. Along the gravity axis, gravity dependence was seen only in the lateral positions in ventilation distribution, with the dependent lung being better ventilated regardless of position. This gravity dependence was not seen in perfusion. When looking anatomically, differences were only apparent in the lateral positions. The lateral position ventilation distributions showed a difference in the left lung, with the right lung maintaining a similar distribution in both lateral positions. This is likely caused by more pronounced anatomical changes in the left lung when changing positions. Conclusions The modified filtration technique was demonstrated to be effective in separating the ventilation and perfusion signals in spontaneously breathing subjects. Gravity dependence was seen only in ventilation distribution in the left lung in lateral positions, suggesting gravity based shifts in anatomical structures. Gravity dependence was not seen in any perfusion distributions.
Resumo:
Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water ((H2O)-H-3) dilution. The limits of agreement for the procedure were, however, large, approximately +/-25%, limiting the applicability of the technique for measurement of body composition in individual animals.
Resumo:
Potential errors in the application of mixture theory to the analysis of multiple-frequency bioelectrical impedance data for the determination of body fluid volumes are assessed. Potential sources of error include: conductive length; tissue fluid resistivity; body density; weight and technical errors of measurement. Inclusion of inaccurate estimates of body density and weight introduce errors of typically < +/-3% but incorrect assumptions regarding conductive length or fluid resistivities may each incur errors of up to 20%.
Resumo:
The large fat globules that can be present in UHT milk due to inadequate homogenisation cause a cream layer to form that limits the shelf life of UHT milk. Four different particle size measurement techniques were used to measure the size of fat globules in poorly homogenised UHT milk processed in a UHT pilot plant. The thickness of the cream layer that formed during storage was negatively correlated with homogenisation pressure. It was positively correlated with the mass mean diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by laser light scattering using the Malvern Mastersizer. Also, the thickness of the cream layer was positively correlated with the volume mode diameter and the percentage volume of particles between 1.5 and 2 mu m diameter, as determined by electrical impedance using the Coulter Counter. The cream layer thickness did not correlate significantly with the Coulter Counter measurements of volume mean diameter, or volume percentages of particles between 2 and 5 mu m or 5 and 10 mu m diameter. Spectroturbidimetry (Emulsion Quality Analyser) and light microscopy analyses were found to be unsuitable for assessing the size of the fat particles. This study suggests that the fat globule size distribution as determined by the electrical impedance method (Coulter Counter) is the most useful for determining the efficiency of homogenisation and therefore for predicting the stability of the fat emulsion in UHT milk during storage.
Resumo:
Bioelectrical impedance analysis has found extensive application as a simple noninvasive method for the assessment of body fluid volumes, The measured impedance is, however, not only related to the volume of fluid but also to its inherent resistivity. The primary determinant of the resistivities of body fluids is the concentration of ions. The aim of this study was to investigate the sensitivity of bioelectrical impedance analysis to bodily ion status. Whole body impedance over a range of frequencies (4-1012 kHz) of rats was measured during infusion of various concentrations of saline into rats concomitant with measurement of total body and intracellular water by tracer dilution techniques. Extracellular resistance (R-o), intracellular resistance (R-i) and impedance at the characteristic frequency (Z(c)) were calculated. R-o and Z(c) were used to predict extracellular and total body water respectively using previously published formulae. The results showed that whilst R-o and Z(c) decreased proportionately to the amount of NaCl infused, R-i increased only slightly. Impedances at the end of infusion predicted increases iu TBW and ECW of approximately 4-6% despite a volume increase of less than 0.5% in TBW due to the volume of fluid infused. These data are discussed in relation to the assumption of constant resistivity in the prediction of fluid volumes from impedance data.
Resumo:
The objective of the present study was to evaluate the performance of a new bioelectrical impedance instrument, the Soft Tissue Analyzer (STA), which predicts a subject's body composition. A cross-sectional population study in which the impedance of 205 healthy adult subjects was measured using the STA. Extracellular water (ECW) volume (as a percentage of total body water, TBW) and fat-free mass (FFM) were predicted by both the STA and a compartmental model, and compared according to correlation and limits of agreement analysis, with the equivalent data obtained by independent reference methods of measurement (TBW measured by D2O dilution, and FFM measured by dual-energy X-ray absorptiometry). There was a small (2.0 kg) but significant (P < 0.02) difference in mean FFM predicted by the STA, compared with the reference technique in the males, but not in the females (-0.4 kg) or in the combined group (0.8 kg). Both methods were highly correlated. Similarly, small but significant differences for predicted mean ECW volume were observed. The limits of agreement for FFM and ECW were -7.5-9.9 and -4.1-3.0 kg, respectively. Both FFM and ECW (as a percentage of TBW) are well predicted by the STA on a population basis, but the magnitude of the limits of agreement with reference methods may preclude its usefulness for predicting body composition in an individual. In addition, the theoretical basis of an impedance method that does not include a measure of conductor length requires further validation. (C) Elsevier Science Inc. 2000.
Resumo:
The technical reliability (i.e., interinstrument and interoperator reliability) of three SEAC-swept frequency bioimpedance monitors was assessed for both errors of measurement and associated analyses. In addition, intraoperator and intrainstrument variability was evaluated for repeat measures over a 4-hour period. The measured impedance values from a range of resistance-capacitance circuits were accurate to within 3% of theoretical values over a range of 50-800 ohms. Similarly, phase was measured over the range 1 degrees-19 degrees with a maximum deviation of 1.3 degrees from the theoretical value. The extrapolated impedance at zero frequency was equally well determined (+/-3%). However, the accuracy of the extrapolated value at infinite frequency was decreased, particularly at impedances below 50 ohms (approaching the lower limit of the measurement range of the instrument). The interinstrument/operator variation for whole body measurements were recorded on human volunteers with biases of less than +/-1% for measured impedance values and less than 3% for phase. The variation in the extrapolated values of impedance at zero and infinite frequencies included variations due to operator choice of the analysis parameters but was still less than +/-0.5%. (C) 1997 Wiley-Liss, Inc.
Resumo:
The prevention and treatment of diseases related to changes in body composition require accurate methods for the measurement of body composition. However, few studies have dealt specifically with the assessment of body composition of undernourished older subjects by different methodologies. To assess the body composition of undernourished older subjects by two different methods, dual energy x-ray absorptiometry (DXA) and bioelectric impedance (BIA), and to compare results with those of an eutrophic group. The study model was cross-sectional; the study was performed at the University Hospital of the School of Medicine of Ribeiro Preto, University of So Paulo, Brazil. Forty-one male volunteers aged 62 to 91 years. The groups were selected on the basis of anamnesis, physical examination and nutritional assessment according to the Mini Nutritional Assessment (MNA) score. Body composition was assessed by DXA and BIA. Body weight, arm and calf circumference, body mass index (BMI), fat free mass (FFM) and fat mass (FM) were significantly lower in the undernourished group as compared to the eutrophic group. There were no significant differences between FFM and FM mean values determined by DXA and BIA in both groups, but the agreement between methods in the undernourished group was less strong. Our results suggest caution when BIA is to be applied in studies including undernourished older subjects. This study does not support BIA as an accurate method for the individual assessment of body composition.
Resumo:
The association of sustained cerebral edema with poor neurological outcome following hypoxia-ischaemia in the neonate suggests that measurement of cerebral edema may allow early prediction of outcome in these infants. Direct measurements of cerebral impedance have been widely used in animal studies to monitor cerebral edema, but such invasive measurements are not possible in the human neonate. This study investigated the ability of noninvasive cerebral impedance measurements to detect cerebral edema following hypoxia-ischaemia. One-day-old piglets were anaesthetized, intubated and ventilated. Hypoxia was induced by reducing the inspired oxygen concentration to 4-6% O-2. Noninvasive cerebral bioimpedance was measured using gel electrodes attached to the scalp. Cerebral bioimpedance was also measured directly by insertion of two silver-silver chloride electrodes subdurally. Noninvasive and invasive measurements were made before, during and after hypoxia. Whole body impedance was measured to assess overall fluid movements. Intracranial pressure was measured continuously via a catheter inserted subdurally, as an index of cerebral edema. There was good agreement between noninvasive and invasive measurements of cerebral impedance although externally obtained responses were attenuated. Noninvasive measurements were also well correlated with intracranial pressure. Whole body impedance changes did not account for increases in noninvasively measured cerebral impedance. Results suggest that noninvasive cerebral impedance measurements do reflect intracranial events, and are able to detect cerebral edema following hypoxia-ischaemia in the neonate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this study was to compare the measurement of total body water (TBW) by deuterium ((H2O)-H-2) dilution and bioelectrical impedance analysis (BIA) in patients with cystic fibrosis (CF) and healthy controls. Thirty-six clinically stable patients with CF (age 25.4 +/- 5.6 yrs) and 42 healthy controls (age 25.4 +/- 4.8) were recruited into this study. TBW was measured by (H2O)-H-2 dilution and predicted by BIA in patients and controls. The TBW predicted from BIA was significantly different from TBW as measured using (H2O)-H-2 in patients (P