984 resultados para Immune-responses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eosinophils have long been thought to be effectors of immunity to helminths but have also been implicated in the pathogenesis of asthma. Patterns of cytokine production in the host may influence the pathogenesis of these diseases by regulating the activities of eosinophils and other components of the immune response. Mice which constitutively over-express IL-5 have profound and life-long eosinophilia in a restricted number of tissues. Although eosinophils from IL-5 transgenics are functionally competent for a number of parameters considered to be important in inflammation, untreated animals are overtly normal and free of disease. In addition, the responses of these animals when exposed to aeroallergens and helminths present a number of apparent paradoxes. Eosinophil accumulation in tissues adjacent to major airways is rapid and extensive in transgenics exposed to the aeroallergen, but even after treatment with antigen over many months these mice show no evidence of respiratory distress or pathology. Helminth-infected IL-5 transgenics and their non-transgenic littermates develop similar inflammatory responses at mucosal sites and are comparable for a number of T cell and antibody responses, but they differ considerably in their ability to clear some parasite species. The life-cycle of Nippostrongylus brasiliensis is significantly inhibited in IL-5 transgenics, but that of Toxocara canis is not. Our results also suggest that eosinophilia and/or over-expression of IL-5 may actually impair host resistance to Schistosoma mansoni and Trichinella spiralis. The pathogenesis of diseases in which eosinophils are involved may therefore be more complex than previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Hepatitis C virus (HCV) infection is a major cause of morbidity in HIV infected individuals. Coinfection with HIV is associated with diminished HCV-specific immune responses and higher HCV RNA levels. AIMS: To investigate whether long-term combination antiretroviral therapy (cART) restores HCV-specific T cell responses and improves the control of HCV replication. METHODS: T cell responses were evaluated longitudinally in 80 HIV/HCV coinfected individuals by ex vivo interferon-gamma-ELISpot responses to HCV core peptides, that predominantly stimulate CD4(+) T cells. HCV RNA levels were assessed by real-time PCR in 114 individuals. RESULTS: The proportion of individuals with detectable T cell responses to HCV core peptides was 19% before starting cART, 24% in the first year on cART and increased significantly to 45% and 49% after 33 and 70 months on cART (p=0.001). HCV-specific immune responses increased in individuals with chronic (+31%) and spontaneously cleared HCV infection (+30%). Median HCV RNA levels before starting cART were 6.5 log(10) IU/ml. During long-term cART, median HCV-RNA levels slightly decreased compared to pre-cART levels (-0.3 log10 IU/ml, p=0.02). CONCLUSIONS: Successful cART is associated with increasing cellular immune responses to HCV core peptides and with a slight long-term decrease in HCV RNA levels. These findings are in line with the favourable clinical effects of cART on the natural history of hepatitis C and with the current recommendation to start cART earlier in HCV/HIV coinfected individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a murine experimental model of toxocariasis has been developed in BALB/c, C57BL/10 and C3H murine strains orally inoculated with 4,000 Toxocara canis embryonated eggs, in order to investigate the isotype-specific immune responses against excretory-secretory antigens from larvae. T. canis specific IgG+M, IgM, IgG, IgA, IgG1, IgG2a and IgG3 were tested by ELISA. The dynamics of the specific immunoglobulins (IgG+IgM) production showed a contrasting profile regarding the murine strain. Conversely to the results obtained with the IgM isotype, the IgG antibody class showed similar patterns to those obtained with IgG+IgM antibodies, only in the case of the BALB/c strain, being different and much higher than the obtained with IgG+IgM antibodies, when the C3H murine strain was used. The antibodies IgG+IgM tested in BALB/c and C57BL/10 were both of the IgM and IgG isotypes. Conversely, in the C3H strain only IgG specific antibody levels were detected. The IgG1 subclass responses showed a similar profile in the three murine strains studied, with high values in BALB/c, as in the case of the IgG responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time imaging of stromal and immune cells in tumors is an emerging field that will greatly help us to understand the role of these non-malignant tumor components in tumor progression and therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of Kudoa species infect the somatic muscle of fish establishing cysts. As there is no effective method to detect infected fish without destroying them these parasited fish reach the consumer. This work was developed to determine whether this parasite contains antigenic compounds capable of provoking an immune response in laboratory animals, in order to consider the possible immunopathological effects in man by the ingestion of Kudoa infected fish. BALB/c mice were injected by the subcutaneous route with the following extracts suspended in aluminium hydroxide: group 1 (black Kudoa sp. pseudocyst extract), group 2 (white Kudoa sp. pseudocyst extract), and group 3 (non-infected hake meat extract). Specific antibody levels were measured by ELISA against homologous and heterologous antigens. The highest responses were obtained from the black Kudoa sp. pseudocyst extract (group 1).The low optic density levels detected in group 3 proved that the results obtained in groups 1 and 2 were a consequence of the parasitic extract injection. The IgG1 was the predominant subclass. IgE detected in groups 1 and 2 showed the possible allergenic nature of some of the components of the parasitic extract. High IgA levels and medium IgG2a and IgG3 levels were obtained in groups 1 and 2. Low IgG2b responses were shown. No cross-reactions between Kudoa sp. pseudocyst extracts and the non-infected hake meat extract were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor vaccines may induce activation and expansion of specific CD8 T cells which can subsequently destroy tumor cells in cancer patients. This phenomenon can be observed in approximately 5-20% of vaccinated melanoma patients. We searched for factors associated with T cell responsiveness to peptide vaccines. Peptide antigen-specific T cells were quantified and characterized ex vivo before and after vaccination. T cell responses occurred primarily in patients with T cells that were already pre-activated before vaccination. Thus, peptide vaccines can efficiently boost CD8 T cells that are pre-activated by endogenous tumor antigen. Our results identify a new state of T cell responsiveness and help to explain and predict tumor vaccine efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kaposi's sarcoma-associated herpesvirus (KSHV) specific T cell responses and KSHV viremia were analyzed in seven HIV-infected patients with active Kaposi's sarcoma lesions who initiated highly active antiretroviral therapy, and were compared between patients with improved Kaposi's sarcoma and those with progressive Kaposi's sarcoma requiring further systemic chemotherapy. Patients with controlled Kaposi's sarcoma disease demonstrated undetectable Kaposi's sarcoma viremia together with KSHV-specific CD8 T cells secreting interferon-gamma and tumor necrosis factor-alpha, whereas progressors showed increasing viremia with weak or no T-cell responses. These data point toward a potential role of KSHV-specific immunity in the control of AIDS-associated Kaposi's sarcoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of interferon gamma (IFNgamma) guarantees effective T cell-mediated immunity against Mycobacterium tuberculosis infection. In the present study, we simply compare the in vitro immune responses to Mycobacterium antigens in terms of IFNg production in a total of 10 healthy Brazilian volunteers. Whole blood and mononuclear cells were cultivated in parallel with PPD, Ag85B, and M. bovis hsp65, and five-days supernatants were harvested for cytokine detection by ELISA. The inter-assay result was that the overall profile of agreement in response to antigens was highly correlated (r² = 0.9266; p = 0.0102). Potential analysis is in current progress to dictate the usefulness of this method to access the immune responses also in tuberculosis patients and its contacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose/Objective: Histone deacetylases (HDACs) deacetylate histones and transcriptional regulators thereby affecting numerous biological functions. Seven mammalian sirtuins (SIRT1-7) constitute the NAD-dependent class III subfamily of HDACs. Sirtuins are the center of great interest due to their regulatory role in the control of metabolism, ageing and age-related diseases. Up to now, little is known about the influence of sirtuins on immune responses, and nothing about the role of SIRT2. The aim of the study was to analyze the influence of SIRT2 knockout on immune cell development and innate immune responses in vitro and in vivo. Materials and methods: SIRT2 germline knockout were produced on a C57BL/6J background. The cellularity of thymus and spleen was assessed by flow cytometry (n = 3). Bone marrow derived macrophages (BMDMs) and dendritic cells (BMDCs) and splenocytes were stimulated with LPS, Pam3CSK4 lipopeptide, CpG ODN, E. coli, S. aureus, TSST-1, SEB, anti-CD3+ CD28 and concanavalin A (n = 3_8). TNF, IL-2, IL-6, IL-12p40 and IFNc production, SIRT1_7 and CD40 expression, and proliferation were quantified by real time-PCR, ELISA, flow cytometry and H3-thymidine incorporation. Mice (n = 6_16) were challenged with LPS, TNF/D-galactosamine, E. coli and K. pneumonia titrated to cause either mild or severe infections or shock. Blood was collected to quantify cytokines and bacteria. Mortality was checked regularly. Results: SIRT2 is the most expressed sirtuin in macrophages and myeloid DCs. To test whether SIRT2 impacts on innate immune responses, we generated SIRT2 germline knockout mice. SIRT2-/- mice born at the expected Mendelian ratio and develop normally. The proportions and absolute numbers of DN1-4, DP and SP thymocytes, and of T-cells (DN and SP, naı¨ve and memory), B-cells (immature and mature), DCs (cDCs and pDCs) and granulocytes in the spleen are similar in SIRT2+/+ and SIRT2-/- mice. SIRT2+/+ and SIRT2-/- BMDMs, BMDCs and splenocytes produce cytokines (RNA and protein), upregulate CD40, and proliferate to the same extent. SIRT2+/+ and SIRT2-/- mice respond similarly (cytokine blood levels, bacterial counts and mortality) to non-severe and lethal endotoxemia, E. coli peritonitis, K. pneumonia pneumonia and TNF-induced shock. Conclusions: SIRT2 knockout has no dramatic impact on the development of immune cells and on innate immune responses in vitro and in vivo. Considering that SIRT2 may participate to control metabolic homeostasis, we are currently assessing the impact of SIRT2 deficiency on innate immune responses under metabolic stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose/Objective: The family of histone deacetylases comprises 18 members in mammals, among which seven sirtuins (SIRT1-7). Sirtuins are NADP-dependent enzymes that have been involved in the control of cell metabolism, proliferation and survival. The expression pattern of sirtuins and their influence on host response to microbial infection remain largely unknown. The aim of the study was to analyze the expression of SIRT1-7 and to address the effects of SIRT1/2 inhibition on innate immune responses in vitro and in vivo.. Materials and methods: in vitro: Bone marrow (BM), BM-derived macrophages (BMDMs) and dendritic cells (BMDCs) and RAW 264.7 and J774.1 macrophage cell lines were stimulated for 0, 2, 6 and 18 h with LPS, Pam3CSK4 and CpG ODN. SIRT1-7 mRNA was quantified by real time-PCR. TNF was measured by ELISA. In vivo: BALB/c mice were challenged with LPS (350 lg i.p.) with or without a SIRT1/2 inhibitor. Blood and organs were collected after 0, 1, 4, 8 and 24 h to quantify SIRT1-7 and TNF. Mortality was assessed daily. Results: Bone marrow, macrophages and DCs express, in order of abundance, SIRT2 > > SIRT1, SIRT3 and SIRT6 > SIRT4, SIRT5 and SIRT7. Microbial products decrease the expression of all sirtuins except SIRT6 in a time dependent manner in BMDMs (0_24 h). SIRT2 is the most expressed sirtuin also in the liver, kidney (together with SIRT3) and spleen. Upon LPS challenge, SIRT1, SIRT3, SIRT4 and SIRT7 mRNA levels decrease in the liver (from 4 h to 24 h), whereas SIRT1-7 mRNA levels decrease within 1 h in both kidney and spleen. Pharmacological inhibition of SIRT1/2 decreases TNF production by macrophages stimulated with LPS, Pam3CSK4 and CpG ODN (n = 6; P < 0.001). In agreement, prophylactic treatment with a SIRT1/2 inhibitor decreases TNF production (n = 8; P = 0.04) and increases survival (n = 13, P = 0.03) of mice challenged with LPS. Conclusions: Sirtuins are expressed in innate immune cells. Inhibition of SIRT1/2 activity decreases cytokine production by macrophages and protects from endotoxemia, suggesting that sirtuin inhibitors may represent novel adjunctive therapy for treating inflammatory disorders such as sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perhaps one of the most intriguing aspects of human Chagas disease is the complex network of events that underlie the generation of protective versus pathogenic immune responses during the chronic phase of the disease. While most individuals do not develop patent disease, a large percentage may develop severe forms that eventually lead to death. Although many efforts have been devoted to deciphering these mechanisms, there is still much to be learned before we can fully understand the pathogenesis of Chagas disease. It is clear that the host's immune response is decisive in this process. While characteristics of the parasite influence the immune response, it is becoming evident that the host genetic background plays a fundamental role in the establishment of pathogenic versus protective responses. The involvement of three complex organisms, host, parasite and vector, is certainly one of the key aspects that calls for multidisciplinary approaches towards the understanding of Chagas disease. We believe that now, one hundred years after the discovery of Chagas disease, it is imperative to continue with highly interactive research in order to elucidate the immune response associated with disease evolution, which will be essential in designing prophylactic or therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute phase of Trypanosoma cruzi infection is associated with a strong inflammatory reaction in the heart characterised by a massive infiltration of immune cells that is dependent on the T. cruzi strain and the host response. 15d-PGJ2 belongs to a new class of anti-inflammatory compounds with possible clinical applications. We evaluated the effects of 15d-PGJ2 administered during the acute phase of T. cruzi infection in mice. Mice were infected with the Colombian strain of T. cruzi and subsequently treated with 15d-PGJ2 repeatedly for seven days. The inflammatory infiltrate was examined by histologic analysis. Slides were immunohistochemically stained to count the number and the relative size of parasite nests. Infection-induced changes in serum cytokine levels were measured by ELISA. The results demonstrated that treatment with 15d-PGJ2 reduced the inflammatory infiltrate in the skeletal muscle at the site of infection and decreased the number of lymphocytes and neutrophils in the blood. In addition, we found that 15d-PGJ2 led to a decrease in the relative volume density of amastigote nests in cardiac muscle. T. cruzi-infected animals treated with 15d-PGJ2 displayed a statistically significant increase in IL-10 levels with no change in IFN-γ levels. Taken together, we demonstrate that treatment with 15d-PGJ2 in the acute phase of Chagas disease led to a controlled immune response with decreased numbers of amastigote nests, as measured by the volume density.