169 resultados para Immobility
Resumo:
In rats, conditioned fear to context causes freezing immobility and cardiovascular changes. The dorsal hippocampus (DH) has a critical role in several memory processes, including conditioning fear to contextual information. To explore a possible involvement of the DH in contextual fear conditioning-evoked cardiovascular (mean arterial pressure and heart rate increases) and behavioral (freezing) responses, DH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the nonselective synapse blocker, cobalt chloride (COCl2, 1 mmol/l), at different periods of the experimental procedure. During re-exposure to the foot shock chamber in which conditioning had taken place, bilateral DH inhibition 10 min before the conditioning session had no effect on either behavioral or cardiovascular responses. Bilateral DH inhibition immediately after the conditioning session (110 min) decreased both behavioral and cardiovascular responses during the context test. Finally, 48 h after the conditioning session, bilateral DH inhibition 10 min before re-exposure to the foot shock chamber significantly reduced cardiovascular responses but not freezing responses. These results suggest that contextual fear conditioning acquisition does not depend on the DH. This structure, however, is crucial for the consolidation of contextual fear. Moreover, although the DH appears to be less important for the behavioral (freezing) changes induced by re-exposure to the aversive conditioned context, it may play an important role on the cardiovascular responses generated by this model.
Resumo:
The effects of microinjection of the nitric oxide (NO) precursor L-arginine (L-Arg), the NO synthase (NOS) inhibitors N-methyl-L-arginine (L-NAME) and 7-nitroindazole (7-NI), and the cyclic guanosine 3`,5`-monophosphate (cGMP) analog 8-Br-cGMP into the dorsal raphe nucleus (DRN) were assessed in rats using the elevated plus maze (EPM) and the forced swim test (FST). L-Arg (100 and 200 nmol) produced an anxiolytic-like effect in the EPM. 8-Br-cGMP (25 and 50 nmol) dose-dependently increased locomotor activity. In the FST, antidepressant-like effects were produced by L-Arg (50 and 100 nmol) and 8-Br-cGMP (12.5 and 25 nmol). Dual effects were observed with NOS inhibitors L-NAME and 7-NI in both the EPM and FST. While low doses of L-NAME (25 nmol) or 7-NI (1 nmol) induced a selective increase in EPM open arm exploration and a decrease in immobility time in the FST, high doses (L-NAME 400 nmol, 7-NI 10 nmol) decreased locomotor activity. These results show that interference with NO-mediated neurotransmission in the DRN induced significant and complex motor and emotional effects. Further studies are needed to elucidate the mechanisms involved in these effects. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The ventral medial prefrontal cortex (vMPFC) has direct connections to subcortical, diencephalic and brainstem structures that have been closely related to depression. However, studies aimed at investigating the role of the vMPFC in the neurobiology of depression have produced contradictory results. Moreover, the precise involvement of vMPFC anatomic subdivisions, the prelimbic(PL) and the infralimbic (IL) cortices, in regulating depressive-like behavior have been poorly investigated. The forced swimming test (FST) is a widely employed animal model aimed at detecting antidepressant-like effects. Therefore, to further investigate a possible involvement of the vMFPC in depressive-like behavior, rats bilaterally implanted with cannulae aimed at the PL or IL prefrontal cortices were submitted to 15 min of forced swimming (pre-test) followed, 24 h later, by a 5-min swimming session (test), where immobility time was registered. Synaptic transmission in these regions was temporarily inhibited using local microinjection of cobalt chloride at different periods of the experimental procedure (before or after the pre-test or before the test). PL inactivation decreased immobility time independently of the time of the injection. In the IL inactivation induced a significant antidepressant-like effect when performed immediately before the pre-test or before the test, but not after the pre-test. These results suggest that activation of the vMPFC is important for the behavioral changes observed in rats submitted to the FST. They further indicate that, although both the PL and IL cortices are involved in these effects, they may play different roles. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose: Cannabidiol (CBD) is a non-psychotomimetic compound from Cannabis sativa that induces anxiolytic- and antipsychotic-like effects in animal models. Effects of CBD may be mediated by the activation of 5-HT(1A) receptors. As 5-HT(1A) receptor activation may induce antidepressant-like effects, the aim of this work was to test the hypothesis that CBD would have antidepressant-like activity in mice as assessed by the forced swimming test. We also investigated if these responses depended on the activation of 5-HT(1A) receptors and on hippocampal expression of brain-derived neurotrophic factor (BDNF). Experimental approach: Male Swiss mice were given (i.p.) CBD (3, 10, 30, 100 mg.kg(-1)), imipramine (30 mg.kg(-1)) or vehicle and were submitted to the forced swimming test or to an open field arena, 30 min later. An additional group received WAY100635 (0.1 mg.kg(-1), i.p.), a 5-HT(1A) receptor antagonist, before CBD (30 mg.kg(-1)) and assessment by the forced swimming test. BDNF protein levels were measured in the hippocampus of another group of mice treated with CBD (30 mg.kg(-1)) and submitted to the forced swimming test. Key results: CBD (30 mg.kg(-1)) treatment reduced immobility time in the forced swimming test, as did the prototype antidepressant imipramine, without changing exploratory behaviour in the open field arena. WAY100635 pretreatment blocked CBD-induced effect in the forced swimming test. CBD (30 mg.kg(-1)) treatment did not change hippocampal BDNF levels. Conclusion and implications: CBD induces antidepressant-like effects comparable to those of imipramine. These effects of CBD were probably mediated by activation of 5-HT(1A) receptors. British Journal of Pharmacology (2010) 159, 122-128; doi:10.1111/j.1476-5381.2009.00521.x; published online 4 December 2009
Resumo:
Dysfunction in the hypothalamic GABAergic system has been implicated in panic syndrome in humans. Furthermore, several studies have implicated the hypothalamus in the elaboration of pain modulation. Panic-prone states are able to be experimentally induced in laboratory animals to study this phenomenon. The aim of the present work was to investigate the involvement of medial hypothalamic nuclei in the organization of panic-like behaviour and the innate fear-induced oscillations of nociceptive thresholds. The blockade of GABA(A) receptors in the neuronal substrates of the ventromedial. or dorsomedial hypothalamus was followed by elaborated defensive panic-like reactions. Moreover, innate fear-induced antinociception was consistently elicited after the escape behaviour. The escape responses organized by the dorsomedial and ventromedial hypothalamic nuclei were characteristically more elaborated, and a remarkable exploratory behaviour was recorded during GABA(A) receptor blockade in the medial hypothalamus. The motor characteristic of the elaborated defensive escape behaviour and the patterns of defensive alertness and defensive immobility induced by microinjection of the bicuculline either into the dorsomedial. or into the ventromedial hypothalamus were very similar. This was followed by the same pattern of innate fear-induced antinociceptive response that lasted approximately 40 min after the elaborated defensive escape reaction in both cases. These findings suggest that dysfunction of the GABA-mediated neuronal system in the medial hypothalamus causes panic-like responses in laboratory animals, and that the elaborated escape behaviour organized in both dorsomedial and ventromedial hypothalamic nuclei are followed by significant innate-fear-induced antinociception. Our findings indicate that the GABA(A) receptor of dorsomedial and ventromedial hypothalamic nuclei are critically involved in the modulation of panic-like behaviour. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In ostariophysan fish, the detection of alarm substance released from the skin of a conspecific or a sympatric heterospecific may elicit alarm reactions or antipredator behavioral responses. In this study, experiments were performed to characterize and quantify the behavioral response threshold of Leporinus piau, both individually and in schools, to growing dilutions of conspecific (CAS) and heterospecific skin extract (HAS). The predominant behavioral response to CAS stock stimulation was biphasic for fish held individually, with a brief initial period of rapid swimming followed by a longer period of immobility or reduced swimming activity. As the dilution of skin extract was increased, the occurrence and magnitude of the biphasic alarm response tended to decrease, replaced by a slowing of locomotion. Slowing was the most common antipredator behavior, observed in 62.5% of animals submitted to HAS stimulation. School cohesion, measured as proximity of fish to the center of the school, and swimming activity near the water surface significantly increased after exposure to CAS when compared with the control group exposed to distilled water. Histological analysis of the epidermis revealed the presence of Ostariophysi-like club cells. The presence of these cells and the behavioral responses to conspecific and heterospecific skin extract stimulation suggest the existence of a pheromone alarm system in L. piau similar to that in Ostariophysi, lending further support for the neural processing of chemosensory information in tropical freshwater fish.
Resumo:
Vocalization generated by the application of a noxious stimulus is an integrative response related to the affective-motivational component of pain. The rostral ventromedial medulla (RVM) plays an important role in descending pain modulation, and opiates play a major role in modulation of the antinociception mediated by the RVM. Further, it has been suggested that morphine mediates antinociception indirectly, by inhibition of tonically active GABAergic neurons. The current study evaluated the effects of the opioids and GABA agonists and antagonists in the RVM on an affective-motivational pain model. Additionally, we investigated the opioidergic-GABAergic interaction in the RVM in the vocalization response to noxious stimulation. Microinjection of either morphine (4.4 nmo1/0.2 mu l) or bicuculline (0.4 nmo1/0.2 mu l) into the RVM decreased the vocalization index, whereas application of the GABA(A) receptor agonist, musci-mol (0.5 nmo1/0.2 mu l) increased the vocalization index during noxious stimulation. Furthermore, prior microinjection of either the opioid antagonist naloxone (2.7 nmo1/0.2 mu l) or muscimol (0.25 nmo1/0.2 mu l) into the RVM blocked the reduction in vocalization index induced by morphine. These observations suggest an antinociceptive and pro-nociceptive role of the opioidergic and GABAergic neurotransmitters in the RVM, respectively. Our data show that opioids have an antinociceptive effect in the RVM, while GABAergic neurotransmission is related to the facilitation of nociceptive responses. Additionally, our results indicate that the antinociceptive effect of the opioids in the RVM could be mediated by a disinhibition of tonically active GABAergic interneurons in the downstream projection neurons of the descending pain control system; indicating an interaction between the opioidergic and GABAergic pathways of pain modulation. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aims: Several physiological, pharmacological and behavioral lines of evidence suggest that the hippocampal formation is involved in nociception. The hippocampus is also believed to play an important role in the affective and motivational components of pain perception. Thus, Our aim was to investigate the participation of cholinergic, opioidergic and GABAergic systems of the dorsal hippocampus (DH) in the modulation of nociception in guinea pigs. Main methods: The test used consisted of the application of a peripheral noxious stimulus (electric shock) that provokes the emission of a vocalization response by the animal. Key findings: Our results showed that, in guinea pigs, microinjection of carbachol, morphine and bicuculline into the DH Promoted anti nociception, while muscimol promoted pronociception. These results were verified by a decrease and all increase, respectively, in the vocalization index in the vocalization test. This antinociceptive effect of carbachol (2.7 nmol) was blocked by previous administration of atropine (0.7 nmol) or naloxone (1.3 nmol) into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol) into the DH was prevented by pretreatment with naloxone (1.3 nmol) or muscimol (0.5 nmol). At doses of 1.0 nmol, muscimol microinjection caused pronociception, while bicuculline promoted antinociception. Significance: These results indicate the involvement of the cholinergic, opioidergic and GABAergic systems of the DH in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalin from interneurons of the DH, Which Would inhibit GABAergic neurons, resulting in antinociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Resumo:
A growing body of evidence has pointed to the beta-carboline harmine as a potential therapeutic target for the treatment of major depression. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with harmine and imipramine in rats. To this aim, rats were treated for 14 days once a day with harmine (5, 10 and 15 mg/kg) and imipramine (10, 20 and 30 mg/kg) and then subjected to the forced swimming and open-field tests. Harmine and imipramine, at all doses tested, reduced immobility time of rats compared with the saline group. Imipramine increased the swimming time at 20 and 30 mg/kg and harmine increased swimming time at all doses. The climbing time increased in rats treated with imipramine (10 and 30 mg/kg) and harmine (5 and 10 mg/kg), without affecting spontaneous locomotor activity. Brain-derived neurotrophic factor (BDNF) hippocampal levels were assessed in imipramine and harmine-treated rats by ELISA sandwich assay. Interestingly, chronic administration of harmine at the higher doses (10 and 15 mg/kg), but not imipramine, increased BDNF protein levels in rat hippocampus. Finally, these findings further support the hypothesis that harmine could bring about behavior and molecular effects, similar to antidepressants drugs.
Resumo:
Oxidative stress disturbances have been reported in depressed patients and in animals submitted to stress. Recent evidence suggests that antidepressants may have antioxidant properties. However, the therapeutic potential of antioxidants as antidepressant drugs has not been systematically investigated. Therefore, this study tested the hypothesis that N-acetyl-L-cysteine (NAC), a cysteine prodrug with powerful antioxidant activity, would possess anti depressant-like properties in the forced swimming test. Male Wistar rats were subjected to 15 min of forced swimming and immediately afterward, 5, and 23 h later received intraperitoneal injections of NAC (5, 15, 50, 150, and 250 mg/kg), imipramine, 0 5 mg/kg) or vehicle. One hour later they were submitted to the 5 min test swimming session, where immobility time was recorded. Independent groups of animals received the same treatments and their exploratory activity was measured in an open arena for 5 min. NAC (at the doses of 15, 50, and 150 mg/kg) and imipramine induced a significant decrease in immobility time without changing exploratory behavior measured in an open arena. These results suggest that antioxidants such as NAC may have antidepressant effects. Behavioural Pharmacology (C) 19:747-750 2008 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
The behavioral effects of the K-opioid receptor agonist U69593 were examined in lactating rats. On day 5 of lactation, animals were treated with 0.1 mg/kg of U69593 to determine whether it influences general activity and maternal latencies toward pups. Because little attention has been given to the possibility that pre-mating treatment with morphine may modulate the response to K-opioid receptor stimulation, another group of animals was submitted to the same acute challenge after abrupt withdrawal from repeated treatment with morphine sulfate during the pre-mating period (5 mg/kg on alternate days for a total of five doses). Acute F;opioid stimulation reduced total locomotion, rearing frequency, and time spent self-grooming and increased immobility duration. These K agonist effects were not observed in animals pretreated with morphine. Similarly, latencies to retrieve pups were longer only in animals pretreated with saline and challenged acutely with U69593. None of these effects were observed in morphine sulfate-pretreated animals. The present results suggest that pre-mating repeated exposure to morphine produces a tolerance-like effect on behavioral responses to low-dose K-opioid receptor stimulation in active reproductive females. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
O Transtorno do pânico (TP) é um transtorno mental comum que afeta até 5% da população em algum momento da vida, sendo caracterizada pela presença de ataques de pânico (AP) recorrentes. Constitui uma psicopatologia que pode ser afetada pela privação do sono (PS), relação que ainda é pouco compreendida. Neste contexto, modelos experimentais de AP e de PS são ferramentas úteis na investigação dessa possível correlação, especialmente motivado pela crescente condição de privação de sono, que tem se tornado cada vez mais frequente na sociedade moderna. Assim, este estudo avaliou os efeitos da privação de sono paradoxal (PSP) sobre os limiares dos comportamentos defensivos induzidos por estimulação intracraniana (EI) da MCPD e CS de ratos num modelo experimental de AP, assim como verificou a influência da corticosterona sobre esses limiares. Foram utilizados 160 ratos Wistar machos (300g), organizados em 4 grupos com 40 animais cada, como se segue: Grupo Controle (CTR) submetido à EI, porém sem PSP; Grupo Privação (PRV), submetido à EI e privado por 96 horas; Grupo Privação + Bloqueio da corticosterona (PRB), submetido ao tratamento com metirapona, EI, e privado por 96 horas, e Grupo Controle + Bloqueio da corticosterona (CTB), submetido ao tratamento com metirapona e EI, porém sem privação de sono. Após 10 dias do implante cirúrgico intracraniano de eletrodo na MCPD e CS, os animais passaram por 5 sessões de estimulação, como se segue: 1ª (TRI) considerada triagem - imediatamente antes da privação, 2ª (P48) após 48h de privação, 3ª (P96) após 96h de privação, 4ª (R48) após 48h de retirada da privação e 5ª (R96) após 96h de retirada da privação. As curvas de limiares das respostas individuais de defesa obtidas nas várias sessões de estimulação da MCPD e CS (TRI, P48, P96, R48 e R96) dos ratos foram comparadas entre si, bem como as curvas de limiares de uma dada resposta nos diferentes grupos (CTR, PRV, CTB e PRB). Além disso, os níveis de corticosterona (CORT) foram dosados nas diferentes sessões de EI, e comparadas num mesmo grupo, bem como nos diferentes grupos. No grupo CTR, todos os comportamentos foram iguais em todas as sessões quando comparados à TRI, entretanto, nos animais privados (PRV), o limiar do galope (GLP) reduziu significativamente em R48 e R96, não ocorrendo xix alterações nos demais comportamentos. Em contraste, no grupo PRB, o Trote (TRT) aumentou a partir de P48, enquanto o GLP não foi alterado em nenhuma sessão de EI. Na comparação entre os grupos, em Salto (SLT), Micção (MIC), Exoftalmia (EXO), Imobilidade (IMO), Defecação (DEF), TRT e GLP, não sofreram alterações decorrentes da CORT produzida decorrente da PSP, sugerindo que a corticosterona não altera os comportamentos defensivos característicos do Ataque de Pânico. Em adição, tais resultados sugerem que os efeitos tardios da PSP sobre os limiares de GLP possivelmente se devam a mecanismos neuroquímicos tempo-dependente.
Resumo:
This work project aims at exploring the role of intergenerational immobility in political violence. A cross-country macro-level analysis is done where no significant results are found. Additionally, an individual micro-level analysis is done where intergenerational mobility (measured through a proxy variable) has a negative significant effect in political violence
Resumo:
Introduction Electroconvulsive therapy (ECT) is considered the most effective treatment for catatonia regardless its underlying condition. The rigid fixed posture and immobility observed in catatonia may lead to several clinical complications, of which, pulmonary embolism (PE) is one of the most severe. The rapid improvement of the psychiatric condition in catatonia-related PE is essential, since immobility favors the occurrence of new thromboembolic events and further complications. In that scenario, ECT should be considered, based on a risk-benefit analysis, aiming at the faster resolution of the catatonia. Methods Case report and literature review. Results A 66-years-old woman admitted to the psychiatric ward with catatonia due to a depressive episode presented bilateral PE. Clinically stable, but still severely depressed after a trial of antidepressants, she was treated with ECT in the course of full anticoagulation with enoxaparin. After five ECT sessions, her mood was significantly better and she was walking and eating spontaneously. She did not present complications related either to PE or to anticoagulation. After the eighth ECT session, she evolved with hypomania, which was managed with oral medication adjustments. The patient was completely euthymic at discharge. Conclusion The case we presented provides further evidence to the anecdotal case reports on the safety of ECT in the course of concomitant full anticoagulant therapy after PE, and illustrates how, with the proper precautions, the benefits of ECT in such condition might outweigh its risks.