905 resultados para Illinois Endangered Species Protection Board
Resumo:
Gymnodiptychus integrigymnatus is a critically endangered species endemic to the Gaoligongshan Mountains. It was thought to be only distributed in several headwater-streams of the Longchuanjiang River (west slope of the Gaoligongshan Mountains, belonging to the Irrawaddy River drainage). In recent years, dozens of G. integrigymnatus specimens have been collected in some streams on the east slope of the Gaoligongshan Mountains (the Salween drainage). We performed a morphological and genetic analyses (based on cytochrome b and D-loop) of the newly discovered populations of G. integrigymnatus to determine whether the degree of separation of these populations warrants species status. Our analysis from the cytochrome b gene revealed that nine individuals from the Irrawaddy drainage area and seven individuals from the Salween drainage area each have only one unique haplotype. The genetic distance between the two haplotypes is 1.97%. Our phylogenetic analysis revealed that G. integrigymnatus is closely related to highly specialized schizothoracine fishes. Analysis from the mitochondrial control region revealed that G. integrigymnatus has relatively high genetic diversity (pi was 0.00891 and h was 0.8714), and individuals from different river drainages do not share the same haplotypes. The AMOVA results indicated 87.27% genetic variability between the Salween and Irrawaddy populations. Phylogenetic trees show two major geographic groups corresponding to the river systems. We recommend that G. integrigymnatus should be considered as a high priority for protected species status in the Gaoligongshan Mountains National Nature Reserve, and that the area of the Gaoligongshan Mountains National Nature Reserve should be expanded to cover the entire distribution of G. integrigymnatus. Populations of G. integrigymnatus from different river systems should be treated as evolutionarily significant units.
Resumo:
1. The freshwater pearl mussel Margaritifera margaritifera L. is globally endangered and is threatened by commercial exploitation, pollution and habitat loss throughout its range. Captive breeding would be a valuable tool in enhancing the status of M. margaritifera in the UK. 2. We have developed a semi-natural system for successfully infecting juvenile brown trout with glochidial M. margaritifera, and culturing juvenile mussels in experimental tanks where glochidial M. margaritifera can excyst from fish gills and settle into sediment. 3. Infected fish had less than 1% mortality. Levels of infection varied among fish. Two yearly cohorts of juvenile M. margaritifera were identified from samples of sediment taken from each experimental tank. Individuals range in size from 1.4 mm (2000 cohort) to >3 mm in length (1999 cohort). 4. The number of juvenile M. margaritifera present in the two experimental tanks are estimated to be between 3600 (tank A) and 0 (tank B) for the putative 1999 cohort and between 6000 (tank A) and 13 000 (tank B) for the putative 2000 cohort. 5. This pioneering method for large-scale cultivation of juvenile M. margaritifera is intermediate between the release of infected fish into rivers and the intensive cultivation systems developed in continental Europe and the USA for other species of unionid. This is the first time that large numbers of M. margaritifera have been cultured and represents a significant breakthrough in the conservation of this globally endangered Red Data List species. The method is straightforward and is most cost-effective when undertaken alongside established hatchery processes.
Resumo:
The development and implementation of a population supplementation and restoration plan for any endangered species should involve an understanding of the species’ habitat requirements prior to the release of any captive bred individuals. The freshwater pearl mussel, Margaritifera margaritifera, has undergone dramatic declines over the last century and is now globally endangered. In Northern Ireland, the release of captive bred individuals is being used to support wild populations and repatriate the species in areas where it once existed. We employed a combination of maximum entropy modelling (MAXENT) and Generalized Linear Mixed Models (GLMM) to identify ecological parameters necessary to support wild populations using GIS-based landscape scale and ground-truthed habitat scale environmental parameters. The GIS-based landscape scale model suggested that mussel occurrence was associated with altitude and soil characteristics including the carbon, clay, sand, and silt content. Notably, mussels were associated with a relatively narrow band of variance indicating that M. margaritifera has a highly specific landscape niche. The ground-truthed habitat scale model suggested that mussel occurrence was associated with stable consolidated substrates, the extent of bankside trees, presence of indicative macrophyte species and fast flowing water. We propose a three phase conservation strategy for M. margaritifera identifying suitable areas within rivers that (i) have a high conservation value yet needing habitat restoration at a local level, (ii) sites for population supplementation of existing populations and (iii) sites for species reintroduction to rivers where the mussel historically occurred but is now locally extinct. A combined analytical approach including GIS-based landscape scale and ground-truthed habitat scale models provides a robust method by which suitable release sites can be identified for the population supplementation and restoration of an endangered species. Our results will be highly influential in the future management of M. margaritifera in Northern Ireland.
Resumo:
Aim: Species loss has increased significantly over the last 1000 years and is ultimately attributed to the direct and indirect consequences of increased human population growth across the planet. A growing number of species are becoming endangered and require human intervention to prevent their local extirpation or complete extinction. Management strategies aimed at mitigating a species loss can benefit greatly from empirical approaches that indicate the rate of decline of a species providing objective information on the need for immediate conservation actions, e.g. captive breeding; however, this is rarely employed. The current study used a novel method to examine the distributional trends of a model endangered species, the freshwater pearl mussel, Margaritifera margaritifera (L.).
Location: United Kingdom and Republic of Ireland.
Methods: Using species presence data within 10-km grid squares since records began three-parameter logistic regression curves were fitted to extrapolate an estimated date of regional extinction.
Results: This study has shown that freshwater pearl mussel distribution has contracted since known historical records and outlier populations were lost first. Within the United Kingdom and Republic of Ireland, distribution loss has been greatest in Scotland, Northern Ireland, Wales and England, respectively, with the Republic of Ireland containing the highest relative proportion of M. margaritifera distribution, in 1998.
Main conclusions: This study provides empirical evidence that this species could become extinct throughout countries within the United Kingdom within 170 years under the current trends and emphasizes that regionally specific management strategies need to be implemented to prevent extirpation of this species.
Resumo:
The ecdysteroid, 20-hydroxyecdysone or beta-ecdysone, is a steroid hormone which plays a crucial role in molting, metamor- phosis and reproduction of arthropods. This ecdysteroid and its analogues have high potential to be used as insecticides. Previous studies in our laboratory have demonstrated that Vitex glabrata R.Br. (commonly known as Khai-Nao), an indigenous herbaceous plant of Thailand, synthesized and accumulated high quantity of 20-hydroxyecdysone. Therefore, the aim of this study was to investigate the effect of precursor and elicitors feeding on cell growth and 20-hydroxyecdysone production of V. glabrata suspension cultures. Plant cells were cultured in half strength MS medium containing 30 g/l glucose and supplemented with 2.0 mg/l 6- benzylaminopurine (BAP) and 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). Cells were incubated on a rotary shaker at 120 rpm under continuous light of 2000 lux at 25 °C. Sterilized cholesterol (5 and 10 mg/l) as precursor was added to the cell cultures on the day of inoculation, while chitosan (50, 100 and 200 mg/l) and methyl jusmonate (100 and 200 mM) as elicitors were added to the cell cultures on day 6 after cultivation.