926 resultados para Ilicit trade of small arms and light weapons
Resumo:
Temporal evolution of plasma jets from micrometre-scale thick foils following the interaction of intense (3 × 10 W cm ) laser pulses is studied systematically by time resolved optical interferometry. The fluid velocity in the plasma jets is determined by comparing the data with 2D hydrodynamic simulation, which agrees with the expected hole-boring (HB) velocity due to the laser radiation pressure. The homogeneity of the plasma density across the jets has been found to be improved substantially when irradiating the laser at circular polarization compared to linear polarization. While overdense plasma jets were formed efficiently for micrometre thick targets, decreasing the target areal density and/or increasing the irradiance on the target have provided indication of transition from the 'HB' to the 'light sail (LS)' regime of RPA, characterized by the appearance of narrow-band spectral features at several MeV/nucleon in proton and carbon spectra.
The Role of Small RNAs and Ribonucleases in the Control of Gene Expression in Salmonella Typhimurium
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
At head of title: [107].
Resumo:
At head of title: [107]. 15th Congress, 1st session, 1817-1818. House. February 20, 1818. Read, and ordered to lie upon the table.
Resumo:
Purpose: To evaluate the effect of cement shade, light-curing unit, and water storage on tensile bond strength (a) of a feldspathic ceramic resin bonded to dentin.Materials and Methods: The dentin surface of 40 molars was exposed and etched with 37% phosphoric acid, then an adhesive system was applied. Forty blocks of feldspathic ceramic (Vita VM7) were produced. The ceramic surface was etched with 10% hydrofluoric acid for 60 s, followed by the application of a silane agent and a dual-curing resin cement (Variolink II). Ceramic blocks were cemented to the treated dentin using either A3 or transparent (Tr) shade cement that was activated using either halogen or LED light for 40 s. All blocks were stored in 37 degrees C distilled water for 24 h before cutting to obtain non-trimmed bar-shaped specimens (adhesive area = 1 mm(2) +/- 0.1) for the microtensile bond strength test. The specimens were randomly grouped according to the storage time: no storage or stored for 150 days in 37 degrees C distilled water. Eight experimental groups were obtained (n = 30). The specimens were submitted to the tensile bond strength test using a universal testing machine at a crosshead speed of 1 mm/min. The data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha = 0.05).Results: The mean bond strength values were significantly lower for the corresponding water stored groups, except for the specimens using A3 resin cement activated by halogen light. There was no significance difference in mean bond strength values among all groups after water storage.Conclusion: Water storage had a detrimental effect under most experimental conditions. For both cement shades investigated (Tr and A3) under the same storage condition, the light-curing units (QTH and LED) did not affect the mean microtensile bond strengths of resin-cemented ceramic to dentin.
Resumo:
Purpose: To evaluate the bond strength between human dentin and composites, using two light-activated single-bottle total-etch adhesive systems with different pHs combined with chemically activated and light-activated-composites. The tested hypothesis was that the dentin bond strength is not influenced by an adhesive system of low pH, combined with chemically activated or light-activated composites. Material and Method: Flat dentin surfaces of twenty-eight human third molars were allocated in 4 groups (n=7), depending on the adhesive system: (One Step Plus-OS and Prime & Bond NT-PB) and composite (light-activated Filtek Z-100 [Z100] and chemically activated Bisfil 2B [B2B]). Each adhesive system was applied on acid-etched dentin and then one of the composites was added to form a 5 mm-high resin block. The specimens were stored in tap water (37 degrees C/24 h) and sectioned into two axes, x and y. This was done with a diamond disk under coolant irrigation to obtain beams with a cross-section area of approximately 0.8 mm(2). Each specimen was then attached to a custom-made device and submitted to the microtensile test (1 mm.min(-1)). Data were analyzed using two-way ANOVA and Tukey's tests (p<0.05). Results: the anticipated hypothesis was not confirmed (p<0.0001). The bond strengths (MPa) were not statistically different between the two adhesive systems when light-activated composite was used (OS+Z100 = 24.7 +/- 7.1(a); PB+Z100 = 23.8 +/- 5.7(a)). However, with use of the chemically activated composite (B2B), PB (7.8 +/- 3.6(b) MPa) showed significantly lower dentin bond strengths than OS (32.2 +/- 7.6(a)). Conclusion: the low pH of the adhesive system can affect the bond of chemically activated composite to dentin. on the other hand, under the present conditions, the low pH did not seem to affect the bond of light-activated composites to dentin significantly.
Resumo:
This study evaluated the Knoop hardness of one resin cement (dual-cure mode or light-cure mode) when illuminated directly or through restorative materials-ceramic (HeraCeram) or composite (Artglass)-by two light curing units. Light curing was carried out using a conventional quartz tungsten halogen (QTH) light source (XL2500) for 40 s, and a light emitting diodes (LED) light source (Ultrablue Is) for 40 s. Bovine incisors had their buccal faces flattened and hybridised. on these surfaces, a mould was seated and filled with cement. A disc of the veneering material (1.5 mm thickness) was positioned over this set for light curing. After storage (24 h/37 degrees C), samples (n = 10) were sectioned for hardness (KHN) measurements. Data were submitted to ANOVA and to Tukey's test (alpha = 0.05). In general, light curing with LED resulted in higher hardness values than QTH. Distinct cement behaviour was observed with different veneering material in association with different light curing units (LCUs). (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The parametric region in the plane defined by the ratios of the energies of the subsystems and the three-body ground state, in which Efimov states can exist, is determined. We use a renormalizable model that guarantees the general validity of our results in the context of short-range interactions. The experimental data for one-and two-neutron separation energies, implies that among the halo nuclei candidates, only 20C has a possible Efimov state, with an estimated energy less than 14 KeV below the scattering threshold.
Resumo:
Includes bibliography
Resumo:
Objectives: This study evaluated the influence of the cavity configuration factor ("C-Factor") and light activation technique on polymerization contraction forces of a Bis-GMA-based composite resin (Charisma, Heraeus Kulzer). Material and Methods: Three different pairs of steel moving bases were connected to a universal testing machine (Emic DL 500): groups A and B - 2x2 mm (CF=0.33), groups C and D - 3x2 mm (CF=0.66), groups E and F - 6x2 mm (CF=1.5). After adjustment of the height between the pair of bases so that the resin had a volume of 12 mm(3) in all groups, the material was inserted and polymerized by two different methods: pulse delay (100 mW/cm(2) for 5 s, 40 s interval, 600 mW/cm(2) for 20 s) and continuous pulse (600 mW/cm(2) for 20 s). Each configuration was light cured with both techniques. Tensions generated during polymerization were recorded by 120 s. The values were expressed in curves (Force(N) x Time(s)) and averages compared by statistical analysis (ANOVA and Tukey's test, p<0.05). Results: For the 2x2 and 3x2 bases, with a reduced C-Factor, significant differences were found between the light curing methods. For 6x2 base, with high C-Factor, the light curing method did not influence the contraction forces of the composite resin. Conclusions: Pulse delay technique can determine less stress on tooth/restoration interface of adhesive restorations only when a reduced C-Factor is present.
Resumo:
[ES] Background: Malignant transformation of intestinal endometriosis is a rare event with an unknown rate of incidence. Metachronous progression of endometriosis to adenocarcinoma from two distant intestinal foci happening in the same patient has not been previously reported. Case presentation: We describe a case of metachronic transformation of ileal and rectal endometriosis into an adenocarcinoma occurring in a 45-year-old female without macroscopic pelvic involvement of her endometriosis. First, a right colectomy was performed due to intestinal obstruction by an ileal mass. Pathological examination revealed an ileal endometrioid adenocarcinoma and contiguous microscopic endometriotic foci. Twenty months later, a rectal mass was discovered. An endoscopic biopsy revealed an adenocarcinoma. En bloc anterior rectum resection, hysterectomy and bilateral salpingectomy were performed. A second endometrioid adenocarcinoma arising from a focus of endometriosis within the wall of the rectum was diagnosed. Conclusion: Intestinal endometriosis should be considered a premalignant condition in premenopausal women.
Resumo:
High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.