978 resultados para Identification accuracy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we describe several techniques for detecting tonic pitch value in Indian classical music. In Indian music, the raga is the basic melodic framework and it is built on the tonic. Tonic detection is therefore fundamental for any melodic analysis in Indian classical music. This workexplores detection of tonic by processing the pitch histograms of Indian classic music. Processing of pitch histograms using group delay functions and its ability to amplify certain traits of Indian music in the pitch histogram, is discussed. Three different strategies to detect tonic, namely, the concert method, the template matching and segmented histogram method are proposed. The concert method exploits the fact that the tonic is constant over a piece/concert.templatematchingmethod and segmented histogrammethodsuse the properties: (i) the tonic is always present in the background, (ii) some notes are less inflected and dominant, to detect the tonic of individual pieces. All the three methods yield good results for Carnatic music (90−100% accuracy), while for Hindustanimusic, the templatemethod works best, provided the v¯adi samv¯adi notes for a given piece are known (85%).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was the identification of new metabolites and transformation products (TPs) in chicken muscle from Enrofloxacin (ENR), Ciprofloxacin (CIP), Difloxacin (DIF) and Sarafloxacin (SAR), which are antibiotics that belong to the fluoroquinolones family. The stability of ENR, CIP, DIF and SAR standard solutions versus pH degradation process (from pH 1.5 to 8.0, simulating the pH since the drug is administered until its excretion) and freeze-thawing (F/T) cycles was tested. In addition, chicken muscle samples from medicated animals with ENR were analyzed in order to identify new metabolites and TPs. The identification of the different metabolites and TPs was accomplished by comparison of mass spectral data from samples and blanks, using liquid chromatography coupled to quadrupole time-of-flight (LC-QqToF) and Multiple Mass Defect Filter (MMDF) technique as a pre-filter to remove most of the background noise and endogenous components. Confirmation and structure elucidation was performed by liquid chromatography coupled to linear ion trap quadrupole Orbitrap (LC-LTQ-Orbitrap), due to its mass accuracy and MS/MS capacity for elemental composition determination. As a result, 21 TPs from ENR, 6 TPs from CIP, 14 TPs from DIF and 12 TPs from SAR were identified due to the pH shock and F/T cycles. On the other hand, 14 metabolites were identified from the medicated chicken muscle samples. Formation of CIP and SAR, from ENR and DIF, respectively, and the formation of desethylene-quinolone were the most remarkable identified compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"This paper will discuss the major developments in the area of fingerprint" "identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allow- ing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice domi- nated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion" "of the uniqueness of fingerprints or the opinion delivered ispe dixit."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interpretation of fingerprint evidence depends on the judgments of fingerprint examiners. This study assessed the accuracy of different judgments made by fingerprint examiners following the Analysis, Comparison, and Evaluation (ACE) process. Each examiner was given five marks for analysis, comparison, and evaluation. We compared the experts' judgments against the ground truth and used an annotation platform to evaluate how Chinese fingerprint examiners document their comparisons during the identification process. The results showed that different examiners demonstrated different accuracy of judgments and different mechanisms to reach them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last decades, calibration techniques have been widely used to improve the accuracy of robots and machine tools since they only involve software modification instead of changing the design and manufacture of the hardware. Traditionally, there are four steps are required for a calibration, i.e. error modeling, measurement, parameter identification and compensation. The objective of this thesis is to propose a method for the kinematics analysis and error modeling of a newly developed hybrid redundant robot IWR (Intersector Welding Robot), which possesses ten degrees of freedom (DOF) where 6-DOF in parallel and additional 4-DOF in serial. In this article, the problem of kinematics modeling and error modeling of the proposed IWR robot are discussed. Based on the vector arithmetic method, the kinematics model and the sensitivity model of the end-effector subject to the structure parameters is derived and analyzed. The relations between the pose (position and orientation) accuracy and manufacturing tolerances, actuation errors, and connection errors are formulated. Computer simulation is performed to examine the validity and effectiveness of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bakgrunden och inspirationen till föreliggande studie är tidigare forskning i tillämpningar på randidentifiering i metallindustrin. Effektiv randidentifiering möjliggör mindre säkerhetsmarginaler och längre serviceintervall för apparaturen i industriella högtemperaturprocesser, utan ökad risk för materielhaverier. I idealfallet vore en metod för randidentifiering baserad på uppföljning av någon indirekt variabel som kan mätas rutinmässigt eller till en ringa kostnad. En dylik variabel för smältugnar är temperaturen i olika positioner i väggen. Denna kan utnyttjas som insignal till en randidentifieringsmetod för att övervaka ugnens väggtjocklek. Vi ger en bakgrund och motivering till valet av den geometriskt endimensionella dynamiska modellen för randidentifiering, som diskuteras i arbetets senare del, framom en flerdimensionell geometrisk beskrivning. I de aktuella industriella tillämpningarna är dynamiken samt fördelarna med en enkel modellstruktur viktigare än exakt geometrisk beskrivning. Lösningsmetoder för den s.k. sidledes värmeledningsekvationen har många saker gemensamt med randidentifiering. Därför studerar vi egenskaper hos lösningarna till denna ekvation, inverkan av mätfel och något som brukar kallas förorening av mätbrus, regularisering och allmännare följder av icke-välställdheten hos sidledes värmeledningsekvationen. Vi studerar en uppsättning av tre olika metoder för randidentifiering, av vilka de två första är utvecklade från en strikt matematisk och den tredje från en mera tillämpad utgångspunkt. Metoderna har olika egenskaper med specifika fördelar och nackdelar. De rent matematiskt baserade metoderna karakteriseras av god noggrannhet och låg numerisk kostnad, dock till priset av låg flexibilitet i formuleringen av den modellbeskrivande partiella differentialekvationen. Den tredje, mera tillämpade, metoden kännetecknas av en sämre noggrannhet förorsakad av en högre grad av icke-välställdhet hos den mera flexibla modellen. För denna gjordes även en ansats till feluppskattning, som senare kunde observeras överensstämma med praktiska beräkningar med metoden. Studien kan anses vara en god startpunkt och matematisk bas för utveckling av industriella tillämpningar av randidentifiering, speciellt mot hantering av olinjära och diskontinuerliga materialegenskaper och plötsliga förändringar orsakade av “nedfallande” väggmaterial. Med de behandlade metoderna förefaller det möjligt att uppnå en robust, snabb och tillräckligt noggrann metod av begränsad komplexitet för randidentifiering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT One of the most relevant activities of Brazilian economy is agriculture. Among the main crops in Brazil, rice is one of high relevance. The state of Rio Grande do Sul, in Southern Brazil, is responsible for 68.7% of domestic production (IBGE, 2013). The goal of this study was to develop a low-cost methodology with a regional scope to identify suitable areas for irrigated rice cropping in this state, using spectro-temporal behavior of vegetation index by means of MODIS images and HAND model. The rice-cropped area of this study was the southern half of the State. Using the HAND model, flood areas were mapped to identify irrigated rice cultivation. We used multi-temporal images of vegetation index from MODIS sensor, covering the period from August 2001 to May 2012. To assess the results, we used data collected in the fields and cropped area information from IBGE. The results showed that the proposed methodology was satisfactory, with Kappa 0.92 and global accuracy of 98.18%. As result, MODIS sensor data and flood areas delineation by means of HAND model generated the estimate irrigated rice area for the area of study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain the desirable accuracy of a robot, there are two techniques available. The first option would be to make the robot match the nominal mathematic model. In other words, the manufacturing and assembling tolerances of every part would be extremely tight so that all of the various parameters would match the “design” or “nominal” values as closely as possible. This method can satisfy most of the accuracy requirements, but the cost would increase dramatically as the accuracy requirement increases. Alternatively, a more cost-effective solution is to build a manipulator with relaxed manufacturing and assembling tolerances. By modifying the mathematical model in the controller, the actual errors of the robot can be compensated. This is the essence of robot calibration. Simply put, robot calibration is the process of defining an appropriate error model and then identifying the various parameter errors that make the error model match the robot as closely as possible. This work focuses on kinematic calibration of a 10 degree-of-freedom (DOF) redundant serial-parallel hybrid robot. The robot consists of a 4-DOF serial mechanism and a 6-DOF hexapod parallel manipulator. The redundant 4-DOF serial structure is used to enlarge workspace and the 6-DOF hexapod manipulator is used to provide high load capabilities and stiffness for the whole structure. The main objective of the study is to develop a suitable calibration method to improve the accuracy of the redundant serial-parallel hybrid robot. To this end, a Denavit–Hartenberg (DH) hybrid error model and a Product-of-Exponential (POE) error model are developed for error modeling of the proposed robot. Furthermore, two kinds of global optimization methods, i.e. the differential-evolution (DE) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm, are employed to identify the parameter errors of the derived error model. A measurement method based on a 3-2-1 wire-based pose estimation system is proposed and implemented in a Solidworks environment to simulate the real experimental validations. Numerical simulations and Solidworks prototype-model validations are carried out on the hybrid robot to verify the effectiveness, accuracy and robustness of the calibration algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes techniques for modeling, optimizing and simulating calibration processes of robots using off-line programming. The identification of geometric parameters of the nominal kinematic model is optimized using techniques of numerical optimization of the mathematical model. The simulation of the actual robot and the measurement system is achieved by introducing random errors representing their physical behavior and its statistical repeatability. An evaluation of the corrected nominal kinematic model brings about a clear perception of the influence of distinct variables involved in the process for a suitable planning, and indicates a considerable accuracy improvement when the optimized model is compared to the non-optimized one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays global business trends force the adoption of innovative ICTs into the supply chain management (SCM). Particularly, the RFID technology is on high demand among SCM professionals due to its business advantages such as improving of accuracy and veloc-ity of SCM processes which lead to decrease of operational costs. Nevertheless, a question of the RFID technology impact on the efficiency of warehouse processes in the SCM re-mains open. The goal of the present study is to experiment the possibility of improvement order picking velocity in a warehouse of a big logistics company with the use of the RFID technology. In order to achieve this goal the following objectives have been developed: 1) Defining the scope of the RFID technology applications in the SCM; 2) Justification of the RFID technology impact on the SCM processes; 3) Defining a place of the warehouse order picking process in the SCM; 4) Identification and systematization of existing meth-ods of order picking velocity improvement; 5) Choosing of the study object and gathering of the empirical data about number of orders, number of hours spent per each order line daily during 5 months; 6) Processing and analysis of the empirical data; 7) Conclusion about the impact of the RFID technology on the speed of order picking process. As a result of the research it has been found that the speed of the order picking processes has not been changed as time has gone after the RFID adoption. It has been concluded that in order to achieve a positive effect in the speed of order picking process with the use of the RFID technology it is necessary to simultaneously implement changes in logistics and organizational management in 3PL logistics companies. Practical recommendations have been forwarded to the management of the company for further investigation and procedure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing techniques involving hyperspectral imagery have applications in a number of sciences that study some aspects of the surface of the planet. The analysis of hyperspectral images is complex because of the large amount of information involved and the noise within that data. Investigating images with regard to identify minerals, rocks, vegetation and other materials is an application of hyperspectral remote sensing in the earth sciences. This thesis evaluates the performance of two classification and clustering techniques on hyperspectral images for mineral identification. Support Vector Machines (SVM) and Self-Organizing Maps (SOM) are applied as classification and clustering techniques, respectively. Principal Component Analysis (PCA) is used to prepare the data to be analyzed. The purpose of using PCA is to reduce the amount of data that needs to be processed by identifying the most important components within the data. A well-studied dataset from Cuprite, Nevada and a dataset of more complex data from Baffin Island were used to assess the performance of these techniques. The main goal of this research study is to evaluate the advantage of training a classifier based on a small amount of data compared to an unsupervised method. Determining the effect of feature extraction on the accuracy of the clustering and classification method is another goal of this research. This thesis concludes that using PCA increases the learning accuracy, and especially so in classification. SVM classifies Cuprite data with a high precision and the SOM challenges SVM on datasets with high level of noise (like Baffin Island).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Affiliation: Institut de recherche en immunologie et en cancérologie, Université de Montréal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les champignons mycorhizien à arbuscules (CMA) sont des organismes pouvant établir des symbioses avec 80% des plantes terrestres. Les avantages d'une telle symbiose sont de plus en plus caractérisés et exploités en agriculture. Par contre, jusqu'à maintenant, il n'existe aucun outil permettant à la fois l'identification et la quantification de ces champignons dans le sol de façon fiable et rapide. Un tel outil permettrait, entre autres, de mieux comprendre les dynamiques des populations des endomycorhizes dans le sol. Pour les producteurs d'inoculum mycorhiziens, cela permettrait également d'établir un suivi de leurs produits en champs et d'avoir un contrôle de qualité de plus sur leurs inoculants. C'est ce que nous avons tenté de développer au sein du laboratoire du Dr. Hijri. Depuis environ une trentaine d'années, des outils d'identification et/ou de quantification ont été développés en utilisant les profiles d'acides gras, les isozymes, les anticorps et finalement l'ADN nucléaire. À ce jour, ces méthodes d’identification et de quantification sont soit coûteuses, soit imprécises. Qui plus est, aucune méthode ne permet à la fois la quantification et l’identification de souches particulières de CMA. L’ADN mitochondrial ne présente pas le même polymorphisme de séquence que celui qui rend l’ADN nucléaire impropre à la quantification. C'est pourquoi nous avons analysé les séquences d’ADN mitochondrial et sélectionné les régions caractéristiques de deux espèces de champignons mycorhiziens arbusculaires (CMA). C’est à partir de ces régions que nous avons développé des marqueurs moléculaires sous forme de sondes et d’amorces TaqMan permettant de quantifier le nombre de mitochondries de chacune de ces espèces dans un échantillon d’ADN. Nous avons ensuite tenté de déterminer une unité de quantification des CMA, soit un nombre de mitochondries par spore. C’est alors que nous avons réalisé que la méthode de préparation des échantillons de spores ainsi que la méthode d’extraction d’ADN avaient des effets significatifs sur l’unité de quantification de base. Nous avons donc optimisé ces protocoles, avant d’en e tester l’application sur des échantillons de sol et de racines ayant été inoculés avec chacune des deux espèces cibles. À ce stade, cet outil est toujours semi-quantificatif, mais il permet 9 l’identification précise de deux espèces de CMA compétentes dans des milieux saturés en phosphore inorganique. Ces résultats , en plus d’être prometteurs, ont permis d’augmenter les connaissances méthodologiques reliées à la quantification des CMA dans le sol, et suggèrent qu’à cause de leurs morphologies différentes, l’élaboration d’un protocole de quantification standardisé pour toutes les espèces de CMA demeure un objectif complexe, qui demande de nouvelles études in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification