973 resultados para Ice -- Manufacture
Resumo:
Rigid lenses, which were originally made from glass (between 1888 and 1940) and later from polymethyl methacrylate or silicone acrylate materials, are uncomfortable to wear and are now seldom fitted to new patients. Contact lenses became a popular mode of ophthalmic refractive error correction following the discovery of the first hydrogel material – hydroxyethyl methacrylate – by Czech chemist Otto Wichterle in 1960. To satisfy the requirements for ocular biocompatibility, contact lenses must be transparent and optically stable (for clear vision), have a low elastic modulus (for good comfort), have a hydrophilic surface (for good wettability), and be permeable to certain metabolites, especially oxygen, to allow for normal corneal metabolism and respiration during lens wear. A major breakthrough in respect of the last of these requirements was the development of silicone hydrogel soft lenses in 1999 and techniques for making the surface hydrophilic. The vast majority of contact lenses distributed worldwide are mass-produced using cast molding, although spin casting is also used. These advanced mass-production techniques have facilitated the frequent disposal of contact lenses, leading to improvements in ocular health and fewer complications. More than one-third of all soft contact lenses sold today are designed to be discarded daily (i.e., ‘daily disposable’ lenses).
Resumo:
Working as a sport psychologist with Olympic athletes requires a clear understanding of a broad range of multifaceted individual, group, situational, and environmental issues, all of which have the ability to impact upon performance. This article provides an overview of some of the common yet vital issues that have been observed to arise when working with Olympic Winter Games athletes and teams; what to expect, how to recognise them when they occur, and why they are important to prepare for in the context of supporting athletes to achieve the best performance they can at an Olympic Games. Aimed at the emerging sport psychology practitioner, discussion of issues such as performing under pressure, dealing with distractions, adjusting to external factors, team culture, and servicing models creates an informal set of “practical guidelines” based upon real-world experiences that can also be applied to other major sporting competitions.
Resumo:
Engineered biphasic osteochondral tissues may have utility in cartilage defect repair. As bone-marrow-derived mesenchymal stem/stromal cells (MSC) have the capacity to make both bone-like and cartilage-like tissues, they are an ideal cell population for use in the manufacture of osteochondral tissues. Effective differentiation of MSC to bone-like and cartilage-like tissues requires two unique medium formulations and this presents a challenge both in achieving initial MSC differentiation and in maintaining tissue stability when the unified osteochondral tissue is subsequently cultured in a single medium formulation. In this proof-of-principle study, we used an in-house fabricated microwell platform to manufacture thousands of micropellets formed from 166 MSC each. We then characterized the development of bone-like and cartilage-like tissue formation in the micropellets maintained for 8–14 days in sequential combinations of osteogenic or chondrogenic induction medium. When bone-like or cartilage-like micropellets were induced for only 8 days, they displayed significant phenotypic changes when the osteogenic or chondrogenic induction medium, respectively, was swapped. Based on these data, we developed an extended 14-day protocol for the pre-culture of bone-like and cartilage-like micropellets in their respective induction medium. Unified osteochondral tissues were formed by layering 12,000 osteogenic micropellets and 12,000 chondrogenic micropellets into a biphasic structure and then further culture in chondrogenic induction medium. The assembled tissue was cultured for a further 8 days and characterized via histology. The micropellets had amalgamated into a continuous structure with distinctive bone-like and cartilage-like regions. This proof-of-concept study demonstrates the feasibility of micropellet assembly for the formation of osteochondral-like tissues for possible use in osteochondral defect repair.
Resumo:
We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions < 10 μm diameter; we termed this microscopic donor matrix "cartilage dust (CD)". Using a microwell platform, we show that ~0.83 μg CD can be rapidly and efficiently incorporated into single multicellular aggregates formed from 180 bone marrow mesenchymal stem/stromal cells (MSC) each. The microwell platform enabled the rapid manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.
Resumo:
The overall objective of the proposed project is to increase profitability through application of membrane technology.
Resumo:
Palaeoenvironments of the latter half of the Weichselian ice age and the transition to the Holocene, from ca. 52 to 4 ka, were investigated using isotopic analysis of oxygen, carbon and strontium in mammal skeletal apatite. The study material consisted predominantly of subfossil bones and teeth of the woolly mammoth (Mammuthus primigenius Blumenbach), collected from Europe and Wrangel Island, northeastern Siberia. All samples have been radiocarbon dated, and their ages range from >52 ka to 4 ka. Altogether, 100 specimens were sampled for the isotopic work. In Europe, the studies focused on the glacial palaeoclimate and habitat palaeoecology. To minimise the influence of possible diagenetic effects, the palaeoclimatological and ecological reconstructions were based on the enamel samples only. The results of the oxygen isotope analysis of mammoth enamel phosphate from Finland and adjacent nortwestern Russia, Estonia, Latvia, Lithuania, Poland, Denmark and Sweden provide the first estimate of oxygen isotope values in glacial precipitation in northern Europe. The glacial precipitation oxygen isotope values range from ca. -9.2±1.5 in western Denmark to -15.3 in Kirillov, northwestern Russia. These values are 0.6-4.1 lower than those in present-day precipitation, with the largest changes recorded in the currently marine influenced southern Sweden and the Baltic region. The new enamel-derived oxygen isotope data from this study, combined with oxygen isotope records from earlier investigations on mammoth tooth enamel and palaeogroundwaters, facilitate a reconstruction of the spatial patterns of the oxygen isotope values of precipitation and palaeotemperatures over much of Europe. The reconstructed geographic pattern of oxygen isotope levels in precipitation during 52-24 ka reflects the progressive isotopic depletion of air masses moving northeast, consistent with a westerly source of moisture for the entire region, and a circulation pattern similar to that of the present-day. The application of regionally varied δ/T-slopes, estimated from palaeogroundwater data and modern spatial correlations, yield reasonable estimates of glacial surface temperatures in Europe and imply 2-9°C lower long-term mean annual surface temperatures during the glacial period. The isotopic composition of carbon in the enamel samples indicates a pure C3 diet for the European mammoths, in agreement with previous investigations of mammoth ecology. A faint geographical gradient in the carbon isotope values of enamel is discernible, with more negative values in the northeast. The spatial trend is consistent with the climatic implications of the enamel oxygen isotope data, but may also suggest regional differences in habitat openness. The palaeogeographical changes caused by the eustatic rise of global sea level at the end of the Weichselian ice age was investigated on Wrangel Island, using the strontium isotope (Sr-87/Sr-86) ratios in the skeletal apatite of the local mammoth fauna. The diagenetic evaluations suggest good preservation of the original Sr isotope ratios, even in the bone specimens included in the study material. To estimate present-day environmental Sr isotope values on Wrangel Island, bioapatite samples from modern reindeer and muskoxen, as well as surface waters from rivers and ice wedges were analysed. A significant shift towards more radiogenic bioapatite Sr isotope ratios, from 0.71218 ± 0.00103 to 0.71491 ± 0.00138, marks the beginning of the Holocene. This implies a change in the migration patterns of the mammals, ultimately reflecting the inundation of the mainland connection and isolation of the population. The bioapatite Sr isotope data supports published coastline reconstructions placing the time of separation from the mainland to ca. 10-10.5 ka ago. The shift towards more radiogenic Sr isotope values in mid-Holocene subfossil remains after 8 ka ago reflects the rapid rise of the sea level from 10 to 8 ka, resulting in a considerable reduction of the accessible range area on the early Wrangel Island.
Resumo:
The seasonal occurrence of sea ice that annually covers almost half the Baltic Sea area provides a unique habitat for halo- and cold temperature-tolerant extremophiles. Baltic Sea ice biology has more than 100 years of tradition that began with the floristic observation of species by the early pioneers using light microscopic techniques that were the only thing available at the time. Since the discovery of life within sea ice, more technologies have become available for taxonomy. Electron microscopy and genetic evidence have been used to identify sea ice biota revealing increased numbers of taxa. Meanwhile ecologists have used light microscopic cell enumeration in addition to the chemical and physical properties of sea ice in attempts to explain the food web structure of sea ice and its functions. Thus, during the Baltic winter, the sea ice hosts more abundant and diverse microbial communities than the water column beneath it. These communities are typically dominated by autotrophic diatoms together with a diverse assortment of dinoflagellates, auto- and heterotrophic flagellates, ciliates, metazoan rotifers and bacteria, which are mostly responsible for the recycling of nutrients. This thesis comprises ecological and systematic studies. In addition to the results of the previous studies carried out on landfast ice, the data presented here provide new insight into the spatial distribution of pelagial sea ice, which has remained largely unexplored. The studies reveal spatial heterogeneity in the pelagial sea ice of the Gulf of Bothnia. There were mismatches in chlorophyll-a concentrations and in photosynthetic efficiencies of the communities studied. The temporal succession was followed and experimental studies performed investigating the community responses towards increased or decreased light in landfast ice in the Gulf of Finland. The systematic studies carried out with established dinoflagellate cultures revealed a new resting cyst belonging to common sea ice dinoflagellate, Scrippsiella hangoei (Schiller) Larsen 1995. The cyst can be used to explain the overwintering of this species during prolonged periods of darkness. The dissimilarities and similarities in the material isolated from the sea ice called for description of a new subspecies Heterocapsa arctica ssp. frigida. The cells obtained in the cultured material were unlike those of the previously described species, necessitating description of ssp. frigida. As a result of its own unique habitus, the subspecies had been noted by Finnish taxonomists during the past three decades and thus its annual occurrence and geographical distribution in the Baltic Sea. This illustrates how combining ecology and systematics increases our understanding of organisms.
Resumo:
The recent discovery of spin ice is a spectacular example of the noncoplanar spin arrangements that can arise in the pyrochlore A2B2O7 structure. We present magnetic and thermodynamic studies on the metallic ferromagnet pyrochlore Sm2Mo2O7. Our studies, carried out on oriented crystals, suggest that the Sm spins have an ordered spin-ice ground state below about T*=15 K. The temperature and field evolution of the ordered spin-ice state are governed by an antiferromagnetic coupling between the Sm and Mo spins. We propose that as a consequence of a robust feature of this coupling, the tetrahedra aligned with the external field adopt a one-in, three-out spin structure as opposed to the three-in, one-out structure in dipolar spin ices, as the field exceeds a critical value.
Resumo:
Pack ice is an aggregate of ice floes drifting on the sea surface. The forces controlling the motion and deformation of pack ice are air and water drag forces, sea surface tilt, Coriolis force and the internal force due to the interaction between ice floes. In this thesis, the mechanical behavior of compacted pack ice is investigated using theoretical and numerical methods, focusing on the three basic material properties: compressive strength, yield curve and flow rule. A high-resolution three-category sea ice model is applied to investigate the sea ice dynamics in two small basins, the whole Gulf Riga and the inside Pärnu Bay, focusing on the calibration of the compressive strength for thin ice. These two basins are on the scales of 100 km and 20 km, respectively, with typical ice thickness of 10-30 cm. The model is found capable of capturing the main characteristics of the ice dynamics. The compressive strength is calibrated to be about 30 kPa, consistent with the values from most large-scale sea ice dynamic studies. In addition, the numerical study in Pärnu Bay suggests that the shear strength drops significantly when the ice-floe size markedly decreases. A characteristic inversion method is developed to probe the yield curve of compacted pack ice. The basis of this method is the relationship between the intersection angle of linear kinematic features (LKFs) in sea ice and the slope of the yield curve. A summary of the observed LKFs shows that they can be basically divided into three groups: intersecting leads, uniaxial opening leads and uniaxial pressure ridges. Based on the available observed angles, the yield curve is determined to be a curved diamond. Comparisons of this yield curve with those from other methods show that it possesses almost all the advantages identified by the other methods. A new constitutive law is proposed, where the yield curve is a diamond and the flow rule is a combination of the normal and co-axial flow rule. The non-normal co-axial flow rule is necessary for the Coulombic yield constraint. This constitutive law not only captures the main features of forming LKFs but also takes the advantage of avoiding overestimating divergence during shear deformation. Moreover, this study provides a method for observing the flow rule for pack ice during deformation.